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Integrative study of the upper and lower
airway microbiome and transcriptome in
asthma
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Chantal Spencer,? Alfin Vicencio,? Eric Schadt,’ and Supinda Bunyavanich'?

"Institute for Data Science and Genomic Technology, Department of Genetics and Genomic Sciences, 2Division of Allergy
and Immunology, Department of Pediatrics, and *Division of Pulmonary Medicine, Department of Pediatrics, Icahn School
of Medicine at Mount Sinai, New York, New York, USA.

Relatively little is known about interactions between the airway microbiome and airway host
transcriptome in asthma. Since asthma affects and is affected by the entire airway, studying

the upper (e.g., nasal) and lower (e.g., bronchial) airways together represents a powerful

approach to understanding asthma. Here, we performed a systematic, integrative study of the
nasal and bronchial microbiomes and nasal and bronchial host transcriptomes of children with
severe persistent asthma and healthy controls. We found that (a) the microbiomes and host
transcriptomes of asthmatic children are each distinct by site (nasal versus bronchial); (b) among
asthmatic children, Moraxella and Alloiococcus are hub genera in the nasal microbiome, while
there are no hubs among bronchial genera; (c) bronchial Actinomyces is negatively associated with
bronchial genes for inflammation, suggesting Actinomyces may be protective; (d) compared with
healthy children, asthmatic children express more nasal genes for ciliary function and harbor more
nasal Streptococcus; and (e) nasal genera such as Corynebacterium are negatively associated with
significantly more nasal genes for inflammation in healthy versus asthmatic children, suggesting a
potentially stronger protective role for such nasal genera in healthy versus asthmatic children. Our
systematic, integrative study provides a window into host-microbiome associations in asthma.

Introduction

Asthma is a prevalent disease affecting millions of people worldwide of all ages and ethnic backgrounds and
is the most common chronic respiratory disease in children (1). Among individuals with asthma, those with
severe persistent asthma have the most impaired health and quality of life, requiring chronic high-dose medi-
cations (2) and living at risk for life-threatening respiratory failure, recurrent hospitalizations, and high medi-
cal expenses (3). Although research on severe persistent asthma has been carried out to better understand this
complex disease, it is still suboptimally understood (4). There has been increasing interest in how the airway
microbiome may play a role in asthma (5-15), as well as interest in deciphering pathophysiologic processes
and endotypes underlying asthma via studies of the airway host transcriptome (5, 16-18). However, airway
microbiome and airway transcriptome studies are commonly conducted independently; thus, relatively little is
known about interactions between the airway microbiome and airway transcriptome in asthma (5).

Since asthma affects and is affected by the entire airway, studying the upper (e.g., nasal) and lower
(e.g., bronchial) airways together represents a powerful approach to understanding asthma (19). However,
such studies can be challenging to conduct, particularly in children, due to the limitations of sampling the
bronchial airway, which requires invasive bronchoscopy and anesthesia. While there have been a few prior
studies of children, which have examined the microbiome of the nasal and bronchial airways together
(9, 20), these were not studies of asthma; instead, they were opportunistic studies of children undergoing
bronchoscopy for a variety of heterogeneous indications. Therefore, they did not yield insight on the airway
dynamics of asthma in particular. To our knowledge, there has not been a study that has investigated the
microbiomes and host transcriptomes of the nasal and bronchial airways of children with asthma. In this
study, we systematically profiled and analyzed the nasal and bronchial microbiomes and nasal and bronchi-
al transcriptomes of children with severe persistent asthma and healthy controls (Figure 1) to identify nasal
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Figure 1. Study design and analytic flow. For each child with severe persistent asthma (n = 27), 4 matched samples
were collected and profiled, including nasal transcriptome, nasal microbiome, bronchial transcriptome, and bronchial
microbiome. For each healthy control (i.e., child without asthma, n = 27), samples for nasal transcriptome and nasal
microbiome were collected and profiled; bronchial samples were not collected because bronchoscopy is not indicated in
healthy children. The circled numbers, referred to as steps, represent the analytic steps taken in this systematic study.
Among children with severe persistent asthma, we compared the nasal versus bronchial transcriptome (step 1), and the
nasal versus bronchial microbiome (step 2). We also assessed positive and negative associations between genera abun-
dances among nasal microbiota, among bronchial microbiota, and between nasal and bronchial microbiota in children
with severe persistent asthma (step 2). Next, using the matched samples from these children with severe persistent
asthma, we characterized associations between nasal transcriptome and nasal microbiota (step 3), as well as associa-
tions between bronchial transcriptome and bronchial microbiota (step 4). We then compared the nasal transcriptome
of children with severe persistent asthma with that of healthy controls (step 5), as well as the nasal microbiome of
children with severe persistent asthma with that of healthy controls (step 6). Finally, we characterized the associations
between nasal transcriptome and nasal microbiota in healthy controls (step 7).

and bronchial microbiota, host nasal and bronchial gene transcripts, and their associations that characterize
severe persistent asthma.

Results

Study population, sample collection, and sample profiling. We recruited 27 children with severe persistent asth-
ma (median age = 11 years, IQR = 8 years) and 27 healthy control subjects of similar age (median age =
13 years, IQR = 6 years) (Supplemental Table 1; supplemental material available online with this article;
https://doi.org/10.1172/jci.insight.133707DS1). Among the children with severe persistent asthma, 26
(96%) had a history of an emergency room visit ever, including 18 (67%) who had been to the emergency
room in the past year. Nineteen (70%) had been previously hospitalized for asthma, including 8 (30%) in
the past year. The median Asthma Control Test (ACT) score of children with severe persistent asthma was
13 (IQR = 7.5), while all of the healthy children uniformly scored the highest possible score (ACT = 25)
for asthma control.

Matched samples were obtained from all subjects (Figure 1). Children with severe persistent asthma
underwent bronchoscopy for their clinical care, during which the following 4 matched samples were col-
lected: nasal and bronchial brushings for transcriptome profiling, and nasal swabs and bronchoalveolar
lavage (BAL) fluid for microbiome profiling. Healthy children did not undergo bronchoscopy due to the
invasiveness of this procedure for healthy children. Matched nasal brushings and nasal swabs were collect-
ed from all healthy children. RNA-sequencing (RNA-seq) was performed on RNA isolated from the nasal
and bronchial brushing samples, and 16S rRNA-seq was performed on DNA isolated from nasal swabs and
BAL fluid. Following data processing and quality control, there were RNA-seq data (n = 17,337 genes) and
16S sequencing data (1,867,809 reads clustering into 3052 OTUs) from the samples for analysis.

Distinct nasal and bronchial transcriptomes in children with severe persistent asthma. We first compared tran-
scriptome profiles from the nasal and bronchial airways of children with severe persistent asthma (step
1 in Figure 1). Along the first 2 principal components computed on the transcriptome data for each ana-
tomic site, the samples clustered by anatomic site (Figure 2A), with 4522 genes differentially expressed
(DE) between the nasal and bronchial airways with threshold of FDR < 0.05 and |log, fold change| >
1 (Figure 2B). To characterize the functional differences represented by this DE signature, we searched

https://doi.org/10.1172/jci.insight.133707 2


https://doi.org/10.1172/jci.insight.133707
https://insight.jci.org/articles/view/133707#sd
https://doi.org/10.1172/jci.insight.133707DS1

. RESEARCH ARTICLE
A

50-

-100-

-150-

Color Key
and Histogram

Count
010000 30000 50000

—
o N e [ WTW%W

S I g Nasal

A S Il Bronchial
A N
44 e Nasal
‘A‘A & A Bronchial S
A A
A - |
A
100
PC1 (0.39)

Figure 2. Nasal versus bronchial transcriptome in children with severe persistent asthma (step 1in Figure 1). Paired nasal and bronchial samples were
collected from children with severe persistent asthma (n = 27), and RNA-seq was used for transcriptome profiling. (A) Principal Component Analysis (PCA)
plot of nasal and bronchial transcriptomes of children with severe persistent asthma shows distinct clustering by anatomic site. Each point represents a
sample. (B) Heatmap of genes differentially expressed (FDR < 0.05, and |log, fold change| > 1) between nasal and bronchial transcriptomes in children with
severe asthma shows distinct clusters. Rows show the 2618 genes upregulated in the bronchial versus nasal transcriptome (cyan), and the 1904 genes
upregulated in the nasal versus bronchial transcriptome (green). Columns show the 27 bronchial (red) and 27 nasal (blue) samples.

insight.jci.org

for biological processes significantly enriched (FDR < 0.05) in this signature using Gene Ontology (GO)
enrichment analysis (21, 22). The top 3 GO terms for genes upregulated in the bronchial brushings of
these children with asthma, ranked by FDR, were cilium assembly (fold enrichment = 5.0, FDR = 1.76
x 10726), cilium morphogenesis (fold enrichment = 4.7, FDR = 2.16 x 10-%), and cilium movement (fold
enrichment = 7.5, FDR = 1.58 x 107!!). In contrast, the top GO terms for genes upregulated in nasal
brushings from these asthmatic children were inflammatory response (fold enrichment = 2.2, FDR =
3.31 x 1077) and epidermis development (fold enrichment = 3.5, FDR = 3.19 x 10-). We provide the full
list of DE genes in Supplemental Table 2 and the full list of GO processes significantly enriched for these
DE genes in Supplemental Table 3. Sensitivity analyses showed no DE genes among nasal or among
bronchial samples from asthmatics based on ACT score or medication use (Supplemental Table 4).

Distinct nasal and bronchial microbiomes in children with severe persistent asthma. Next, we analyzed the
nasal and bronchial microbiomes in children with severe persistent asthma (step 2 in Figure 1). Species
diversity within site (o diversity) by Shannon diversity index was higher in the bronchial versus nasal
airway (FDR = 3.54 x 10°) (Figure 3A). Community composition differences between sites (§ diver-
sity) was also significantly different between the nasal and bronchial airways based on both weighted
UniFrac distance (1-way PERMANOVA pseudo F = 38.8, P= 1.0 x 107%) (Figure 3B) and unweighted
UniFrac distance (1-way PERMANOVA pseudo F = 11.0, P = 1.0 x 107%) (Supplemental Figure 1).
Many genera were differentially abundant between the nasal and bronchial airways in children with
severe asthma (Figure 3C). Corynebacterium (mean = 21.6%, IQR = 25.2%), Staphylococcus (mean =
20.9%, IQR = 31.4%), and Moraxella (mean = 20.8%, IQR = 23.2%) were the top prevalent genera in
the nasal airway, whereas Veillonella (mean = 19.4%, IQR = 12.8%), Prevotella (mean = 16.4%, IQR =
13.4%), Streptococcus (mean = 11.0%, IQR = 8.5%), and Neisseria (mean = 10.7%, IQR = 8.5%) were
the most common genera in the bronchial airway (Figure 3C). Sensitivity analyses showed no differ-
ences in a diversity among nasal or among bronchial samples from asthmatics based on ACT score or
medication use (Supplemental Table 4).

Denser microbial associations in the nasal versus bronchial airway of severe persistent asthmatics. To characterize
relationships between microbiota within the nasal airway, within the bronchial airway, and between the
nasal and bronchial airways (step 2 in Figure 1), we constructed respective networks based on an ensemble
of 4 statistics (23) derived from permutation-renormalization and bootstrapping of 2 correlation measures
(Pearson, Spearman) and 2 dissimilarity measures (Bray-Curtis dissimilarity and Kullback-Leibler diver-
gence; refs. 24, 25). We refer to this network approach as the ensemble4 method (see Methods). Summary
characteristics of the microbiome networks constructed are shown in Supplemental Table 5.
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Figure 3. Nasal versus bronchial microbiome in children with severe persistent asthma (step 2 in Figure 1). (A) Increased bacterial diversity of bronchial
versus nasal microbiome in children with severe persistent asthma (n = 27). The a diversity was estimated by Shannon diversity index by subsampling 10
times for each sample at a rarefaction depth of 1950. P values were calculated using Wilcoxon signed-rank test and FDR correction. (B) Principal Coordinates
Analysis (PCoA) plot of weighted UniFrac distance shows clear separation of bacterial composition between the nasal and bronchial microbiome of children
with severe persistent asthma (n = 27). Each point represents a sample and is colored by airway site. P values were calculated using PERMANOVA with 1000
permutations. (C) Distinct mean relative abundances of bacterial genera in the nasal versus bronchial microbiomes of children with severe persistent asthma
(n = 27). Genera representing < 1% of total abundance in each site are shown as Other. Sixteen of the 20 genera (80%) were differentially abundant by site
(Wilcoxon signed-rank test FDR < 0.05) and are marked with asterisks. For unnamed genera, the closest higher level named taxon is indicated. 'Prevotella
genus affiliated with the Prevotellaceae family. 2Prevotella genus proposed as affiliated with Paraprevotellaceae by the Greengenes database v.13.8.

The network of associations among microbial genera in the nasal airway of children with severe per-
sistent asthma is shown in Figure 4A, and the list of all associations in the network is shown in Supplemen-
tal Table 6. The mean number of associations for each genus in the network was 5.9, with Moraxella and
Alloiococcus exhibiting the highest number of associations with other genera, and markedly so. Moraxella
interacted with 65 other genera (6.2 SD above the mean), and Alloiococcus interacted with 56 other genera
(5.2 SD above the mean). Moraxella and Alloiococcus were, therefore, considered hub genera. Associations
with these 2 genera were uniformly negative except for one. Moraxella was a node in 40% of all negative
associations in the nasal network, and Alloiococcus was a node in 35% of all negative associations in the nasal
network (Figure 4A and Supplemental Table 6). With 23 associations, Corynebacterium also demonstrated
connectivity above the mean by 1.8 SD (Figure 4A and Supplemental Table 6). Figure 4B provides more
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Figure 4. Associations among nasal microbiota and among bronchial microbiota in children with severe persistent asthma (step 2 in Figure 1).

(A) Network of associations among nasal microbiota in children with severe persistent asthma (n = 27). The network was built based on the ensemble4 method
(see Methods). Each circular node represents a nasal genus and is colored by the phylum to which it belongs. Edges between nodes indicate significant associa-
tions between genera and are colored based on positive or negative associations between genera abundances. (B) Matrix of pairwise associations (FDR < 0.05)
between nasal microbiota in children with severe persistent asthma (n = 27). The top 3 most associated genera are shown in bigger font. (C) Network of associa-
tions between bronchial microbiota in children with severe persistent asthma (n = 27). The network was built using the ensemble4 method (see Methods). Each
rhomboid node represents a bronchial genus and is colored by the phyla to which it belongs. Edges between nodes indicate significant associations (FDR < 0.05)
between genera and are colored based on positive or negative associations between genera abundances. 'Prevotella genus is affiliated with Prevotellaceae fam-
ily. 2Prevotella genus proposed as affiliated with Paraprevotellaceae by the Greengenes database v.13.8. (D) Matrix of pairwise associations between bronchial
microbiota in children with severe persistent asthma (1 = 27). The top 3 most associated genera are shown in bigger font.

detail on the associations between the most connected genera in this nasal network. The matrix highlights
that the majority of associations in the nasal network involved Moraxella, Alloiococcus, or Corynebacterium.

The network of associations among microbial genera in the bronchial airway of children with severe
persistent asthma is shown in Figure 4C, and the list of all associations in the network is shown in Sup-
plemental Table 7. The mean number of associations for each genus in the bronchial network was 3.8,
representing 1.6-fold less mean connectivity per genus relative to the nasal network. In contrast to the nasal
network, there were no clear hub genera (Figure 4C). Although an unknown genus in class 7M7-3 and
genus Porphyromonas had higher numbers of associations than the rest (3.4 and 2.6 SD above the mean,
respectively), those numbers did not greatly exceed the average, as was seen for hub genera in the nasal
network. For ease of comparison with results from the nasal airway (Figure 4B), Figure 4D provides a
matrix of associations between the same genera but in the bronchial airway, with genera most connected
in the bronchial airway highlighted with large-font labels. The matrix supports that associations between
bronchial genera were not dominated by specific genera, as in the nasal network.
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Next, we constructed a network of associations between nasal and bronchial microbiota of children
with severe persistent asthma (Figure 5A), and the list of all associations in the network is shown in Supple-
mental Table 8. We found that bronchial Porphyromonas had the highest number of associations with nasal
genera (11% of the total number of associations), and nasal Corynebacterium had the highest number of asso-
ciations with bronchial genera (8% of the total number of associations). Nasal-bronchial associations with
these hub genera are shown in Figure 5B. We also found that Cardiobacterium, Corynebacterium, Eikenella,
Flavobacterium, Haemophilus, Lautropia, an unknown genus in the Gemellaceae family, and an unknown genus
in class TM7-3 were each positively coabundant between the nasal and bronchial airways (Figure 5A).

Microbiome-transcriptome networks in the nasal and bronchial airways of severe persistent asthmatics show
negative associations between bronchial Actinomyces and bronchial inflammation. To characterize relationships
between nasal microbiota and the nasal transcriptome in children with severe persistent asthma (step 3 in
Figure 1), we next constructed networks using our nasal microbiome and nasal transcriptome data and an
ensemble of 3 statistics (ensemble3 method) derived from permutation-renormalization and bootstrapping
(23) of 2 correlation measures (Pearson, Spearman) and the Bray-Curtis dissimilarity measure (24) (see
Methods). Summary characteristics of the network constructed are shown in Supplemental Table 9.

The network of associations between nasal microbiota and nasal transcriptome in children with
severe persistent asthma is shown in Figure 6A, and the list of all associations in the network is shown in
Supplemental Table 10. The mean number of nasally expressed genes associated with each nasal genus
in this network was 14.3. Corynebacterium interacted with many expressed nasal genes (i.e., 293 associ-
ations; 7.8 SD above the mean), representing 30% of the total number of the associations in the nasal
microbiome-transcriptome network. Interestingly, all microbiome-transcriptome associations with Cory-
nebacterium were negative (i.e., higher Corynebacterium abundance associated with lower gene expression
of all 293 associated genes). GO analysis of genes associated with Corynebacterium revealed no significant
enrichments for any biological processes.

Next, to characterize associations between bronchial microbiota and the bronchial transcriptome
in children with severe persistent asthma (step 4 in Figure 1), we analogously constructed associa-
tion networks using our bronchial microbiome and bronchial transcriptome data and the ensemble3
method (Figure 6B). Summary characteristics of this network are shown in Supplemental Table 9,
and the list of all associations in the network is shown in Supplemental Table 11. In this bronchial
microbiome-transcriptome network, the mean number of genes associated with each bronchial genus
was 16.8. Actinomyces was the clear hub genus, associated with 157 bronchial genes (5.71 SD above
the mean). GO analysis of the bronchial genes associated with Actinomyces revealed enrichment for
inflammatory response (fold enrichment = 5.7, FDR = 4.9 x 10%) (21, 22). Given that all 157 bron-
chial gene associations with Actinomyces were negative, the results from this bronchial network suggest
that Actinomyces may protect against bronchial inflammation.

Ciliary function genes are overexpressed in nasal airway of children with severe persistent asthma versus healthy
controls. We next compared nasal transcriptomes between children with severe persistent asthma and
healthy controls (step 5 in Figure 1). A heatmap of the 352 DE genes with FDR < 0.05, and |log, fold
change| >1 is shown in Figure 7A. GO enrichment analysis revealed that the 266 genes overexpressed in
the nasal airways of children with severe persistent asthma versus healthy controls were enriched for pro-
cesses related to ciliary function, including cilium movement (fold enrichment = 31.1, FDR = 6.9 x 107°),
outer dynein arm assembly (fold enrichment = 42.0, FDR = 3.0 x 10), inner dynein arm assembly (fold
enrichment = 40.4, FDR = 7.9 X 107%), and motile cilium assembly (fold enrichment = 35.0, FDR = 1.5 x 102).
The 86 genes underexpressed in children with severe persistent asthma versus controls were significantly
enriched for epidermis development (fold enrichment = 31.6, FDR = 1.3 x 107'%), keratinocyte differen-
tiation (fold enrichment = 32.4, FDR = 1.6 X 10~), and innate immune response (fold enrichment = 5.7,
FDR = 2.6 x 107?). The complete list of DE genes in the nasal airway of children with severe persistent
asthma versus healthy controls is provided in Supplemental Table 12.

Streptococcus is enriched in the nasal airway of children with severe persistent asthma versus healthy controls. Com-
parison of the nasal microbiome of children with severe persistent asthma versus healthy controls (step 6 in
Figure 1) revealed modest differences. The relative abundances of nasal microbial genera in these 2 groups are
shown in Figure 7B. Corynebacterium (mean = 30.4%, IQR = 24.3% in healthy; mean = 21.6%, IQR = 25.2%
in asthma), Staphylococcus (mean = 13.9%, IQR = 14.1% in healthy; mean = 20.9%, IQR = 31.4% in asthma),
and Moraxella (mean = 23.0%, IQR = 57.3% in healthy; mean = 20.8%, IQR = 23.2% in asthma) were the 3
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Figure 5. Associations between nasal and bronchial microbiota in children with severe persistent asthma (step 2 in Figure 1). (A) Network of associations
between nasal microbiota (circular nodes) and bronchial microbiota (rhomboid nodes) in children with severe persistent asthma (n = 27). The network was
built using the ensemble4 method (see Methods). Nodes are colored by the phyla to which they belong. Edges indicate significant associations (FDR < 0.05)
between genera and are colored based on positive and negative associations between genera abundances. (B) Matrix of pairwise associations between nasal
and bronchial microbial hubs and their associated genera in children with severe persistent asthma (n = 27). Nasal genera are along the rows, and bronchial
genera are along the columns.

most abundant microbial genera in the nasal airways of children with severe persistent asthma and healthy
controls. Streptococcus was significantly more abundant in the nasal airway of children with severe persistent

RESEARCH ARTICLE

asthma than in that of healthy controls (LEfSe; ref. 26) (logarithmic Linear Discriminant Analysis [LDA]
score = 4.86, P = 3.26 x 107%). However, there were no significant differences with respect to the following

global measures of diversity: a diversity (Shannon diversity index, P = 0.26) (Supplemental Figure 2),
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and nasal microbiome in children with
severe persistent asthma (n = 27). The
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and gene expression level. (B) Network

of associations between the bronchial
transcriptome and bronchial microbiome
in children with severe persistent asthma
(n = 27). The network was built using the
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B diversity (unweighted UniFrac; 1-way PERMANOVA P = 0.21) (Supplemental Figure 3A), and weighted
UniFrac (1-way PERMANOVA P = 0.17) (Supplemental Figure 3B).

Comparison of asthma nasal microbiome network and healthy nasal microbiome network shows similarity
between hub genera but distinct associations. To characterize relationships between microbiota within the
nasal airway of healthy children, we next built a network using nasal microbiome data from our healthy
controls (Figure 8A). The characteristics of this healthy nasal microbiome network are shown in Supple-
mental Table 5, and the list of all associations in the network is shown in Supplemental Table 13.

We compared this nasal microbiome network from healthy children (Figure 8A) with the nasal micro-
biome network from children with severe persistent asthma (Figure 4A). As was the case in the asthma
nasal microbiome network (Figure 4A), Moraxella and Alloiococcus were hub genera in the healthy nasal
microbiome network (Figure 8A) with 58 associations (6.2 SD above the mean) and 42 associations (4.3
SD above the mean), respectively. Similarly, Corynebacterium was the third most associated genus, with 27
associations (2.5 SD above the mean). Figure 8B provides a matrix of the associations among genera in this
healthy nasal microbiome network.

Although hub genera appeared similar, only 95 microbial associations (41% of asthma nasal microbi-
ome network associations and 36% of healthy nasal microbiome network associations) overlapped between
the asthma and healthy nasal microbiome networks. Interestingly, associations with the top 3 most asso-
ciative genera (Moraxella, Alloiococcus, Corynebacterium) were much better conserved between the 2 networks
than associations with other genera. We recognize that differential connectivity may not necessarily indi-
cate differential functionality.

Comparison of nasal microbiome-transcriptome networks from healthy and asthmatic children reveals that Cory-
nebacterium is negatively associated with inflammation-related biologic processes in healthy but not asthmatic children.
As a final step to our systematic study, we constructed a healthy nasal microbiome-transcriptome network
(Figure 9) using nasal microbiome and nasal host transcriptome profiles from our healthy controls (step 7
in Figure 1). The characteristics of this network are summarized in Supplemental Table 9, and the list of all
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Figure 8. Associations between nasal microbiota in healthy controls. (A) Nasal microbial network in healthy children (n = 27). The network was built using
the ensemble4 method (see Methods). Each circular node represents a nasal genus and is colored by the phylum to which it belongs. Edges between nodes
indicate significant associations (FDR < 0.05) between genera and are colored based on positive and negative associations between genera abundances.
(B) Matrix of pairwise associations between nasal microbiota in healthy children (n = 27). The top 3 most associated genera are shown in bigger font.

insight.jci.org

associations is shown in Supplemental Table 14. The mean number of genes associated with each genus in
this healthy nasal microbiome-transcriptome network was 21.9. As in the analogous network for children
with severe persistent asthma (Figure 6A), Corynebacterium demonstrated an exceptionally large number of
associations with the host nasal genes, with 565 associations (7.9 SD above the mean). All 565 associations
with Corynebacterium were negative except for 2, and the number of associations with Corynebacterium was
48% of the total number of negative associations in the network.

In contrast to the asthma nasal microbiome-transcriptome network where member genes were
not enriched for any biological process, genes associated with Corynebacterium in this healthy nasal
microbiome-transcriptome network were significantly enriched for a large number of immune and
inflammation-related GO biological processes. The top GO terms based on analyses using DAVID (21,
22), ranked by FDR, were inflammatory response (fold enrichment = 5.7, FDR = 1.8 X 107*), immune
response (fold enrichment = 4.8, FDR = 7.2 x 107"°), and chemotaxis (fold enrichment = 7.7, FDR =
6.0 x 1071?). This suggests that, in the healthy nasal airway, Corynebacterium may be more protective
against inflammation, since it negatively interacts with genes that promote inflammation. The fact
that such potentially beneficial suppressive associations were observed and found to be statistically
significant as a set in the healthy network but not in the asthma network suggests that such potential
protection may be impaired in children with severe persistent asthma. Further comparison of the
healthy and asthma nasal microbiome-transcriptome networks revealed that, although their summary
characteristics appeared similar (Supplemental Table 9), only 26 among more than a thousand edges
overlapped between the 2 networks. Additionally, the number of associations with host genes per
microbial genus was much higher in the healthy network (mean 21.9, SD = 69.1) than in the asthma
network (mean 14.3, SD = 35.7), indicating that microbiota in the healthy nasal airway have higher
connectivity with host gene expression.

Discussion

‘While host and microbial factors are each known to influence asthma (5, 27), deciphering their interac-
tions has been more challenging. This study’s integrated study of parallel transcriptome and microbiome
profiles from the nasal and bronchial airways of children with severe persistent asthma and healthy
controls has enabled progress in understanding relationships between the airway microbiome and airway
host transcriptome in asthma. While there have been studies of the airway microbiome in asthma (5-14),
these have typically taken place separately from studies of the airway transcriptome in asthma (5, 15-18).
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0.05) between microbial abundance and gene expression level.

Additionally, whether from the microbiome lens or the transcriptome lens, the nasal and bronchial air-
ways have largely been examined separately, even though asthma affects and is affected by the entire
airway. Our systematic, parallel profiling of the nasal and bronchial microbiomes and transcriptomes of
children with asthma allowed for unprecedented integrated analysis of relationships between microbiota
and host transcriptome in the nasal and bronchial airways of the same children. These relationships
would have been be detected by microbiome-only or transcriptome-only studies, or by nasal-only or bron-
chial-only studies. Additionally, our study design enabled the uncovering of results about the asthmatic
airway unbiased by interindividual differences.

‘We found that Moraxella and Alloiococcus were hub genera in the nasal microbiome networks of chil-
dren with severe persistent asthma (Figure 4A) and healthy controls (Figure 8A), while the bronchial
microbiome network from our study (Figure 4C) demonstrated no hubs. Previous work (28, 29) supports
that microbial communities with at least 1 hub microbe are less susceptible to perturbation by host or
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environmental factors. Interestingly, we found 2 hub nodes in each of our nasal microbiome networks,
suggesting that these nasal microbial communities may be less susceptible to disturbance than the bron-
chial microbial community, where the respective network did not reveal any hub genera. This may speak
to the fact that the nasal airway is the first point of entry to the respiratory tract and may therefore benefit
from being resilient to perturbation. Although the bronchial microbiome network did not follow a scale-
free structure typically observed with biological networks, recent studies support that many biological
networks are often not scale free (30), including microbial networks (31, 32).

Moraxella, a nasal genus that has been previously associated with asthma exacerbation (7) and the devel-
opment of asthma (15), was the most associated genus in the nasal airways of children with severe persistent
asthma (Figure 4, A and B). The second and the third most associated genera were Alloiococcus and Coryne-
bacterium, which have been previously associated with respiratory health (6, 33). Interestingly, our systematic
analysis showed similar hub genera in the nasal microbiome of healthy children (Figure 8A). Although hub
genera of the nasal microbiome networks for asthmatics and for healthy controls appeared similar, the major-
ity of associations with hub genera were distinct between the asthma and healthy nasal microbiome networks,
supporting that the dynamics of associations between genera may better distinguish disease state than just the
presence and/or abundance of a genus. Notwithstanding, we did find that Streptococcus was enriched in the
nasal airway of children with severe persistent asthma versus controls, consistent with prior observations that
its abundance is associated with asthma exacerbation (7) and asthma development (15) in children. Addition-
ally, studies of farm environments and asthma risk have shown that the abundance of Streptococcaceae in
dust microbiota is higher in nonfarm homes associated with asthma risk (34).

In the nasal microbiome-transcriptome network of healthy children (Figure 9), Corynebacterium had
numerous negative associations with a large number of genes related to inflammation, suggesting that the
genus could be protective against airway inflammation. This would be consistent with prior work demon-
strating that Corynebacterium in the upper airway is negatively associated with proinflammatory cytokines in
BAL (13) and positively associated with the elimination of potential pathogens and respiratory health (33).
In the nasal microbiome-transcriptome network of children with severe persistent asthma (Figure 6A),
Corynebacterium also interacted with genes that individually play a role in inflammation, but the number of
these genes was far smaller than in the healthy network, and together as a set, these Corynebacterium-associ-
ated genes were not significantly enriched for inflammatory processes. This suggests that, relative to healthy
children, the protective effects of Corynebacterium are attenuated in children with severe persistent asthma.
Our findings support that the Corynebacterium species is a likely beneficial commensal bacterium that is
abundant in the nasal airway and is associated with suppression of proinflammatory genes.

In the bronchial microbiome-transcriptome network of children with severe persistent asthma (Figure 6B),
Actinomyces (a genus in the phylum Actinobacteria that also includes Corynebacterium) was a hub genus with neg-
ative associations with genes for inflammatory response. Thus, similar to Corynebacterium in the nasal airway,
Actinomyces in the bronchial airway may be protective against bronchial inflammation. As we were not ethically
able to perform bronchoscopy on healthy children, we cannot say how these associations would compare (e.g.,
be fewer) to the associations that would be seen for Actinomyces if a healthy bronchial microbiome-transcriptome
network could be constructed. Consistent with our interpretation of Actinomyces as antiinflammatory bronchial
microbiota, however, a study of adults with mild atopic asthma found that the relative abundance of Actinomyces
in bronchial brushing samples was negatively associated with serum IgE levels and BAL neutrophil counts (13).

A limitation to this study was that the number of subjects examined may have limited our power to
detect additional findings. However, our sample exceeds the size of previous studies of the airway micro-
biome in children where anesthesia was required to obtain biospecimens (8, 9, 20). Furthermore, we sys-
tematically studied each child with severe persistent asthma by 4 molecular dimensions (nasal microbiome,
bronchial microbiome, nasal transcriptome, and bronchial transcriptome), thus moving beyond the scope
of what prior studies have attempted. Also, while it would have been scientifically compelling to obtain
bronchial samples from healthy children to further extend our systematic study, this was not ethically possi-
ble due to the fact that bronchoscopy is an invasive procedure that is not indicated in healthy children. Last,
while our study represents an important step forward in systematically characterizing associations and
correlations between upper and lower airway microbiota and host gene expression in children with asthma,
the causal directions of these relationships could not be established with our study design.

Our systematic, integrative study provides a window into the nasal and bronchial microbiome, nasal and
bronchial transcriptome, and their associations, in children with severe persistent asthma and healthy controls.
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Future work with larger sample sizes could enable analyses for causal interactions between airway microbiota
and host transcriptomes, and additional work incorporating viral and fungal profiling could expand systematic
studies such as this and refine our understanding of host-microbe interactions in asthma.

Methods

Subject recruitment and sample collection. Children with severe persistent asthma were recruited from the pedi-
atric pulmonology practice within the Mount Sinai Health System (New York, New York, USA). Children
were determined to have severe persistent asthma based on criteria proposed by an American Thoracic
Society (ATS) workshop on refractory asthma (35) that were adopted by the Severe Asthma Research
Program (SARP) (36). These criteria were centered around symptom intensity, medication requirements,
treatment needs, and lung function results (36). The children with severe persistent asthma in our cohort
underwent flexible bronchoscopy for clinical management of their refractory asthma.

Healthy controls were recruited from general pediatrics clinics in the Mount Sinai Health System. Any
child with allergic rhinitis, or personal or family history of any airway disease, was excluded. All healthy
controls were required to demonstrate before and after bronchodilator spirometry within normal limits.

Nasal and bronchial transcriptome profiling. For transcriptome profiling of nasal and bronchial airways
of children with severe persistent asthma, and the nasal airway of healthy controls, nasal brushing was
performed with a standard cytology brush for all subjects, and bronchial brushing was performed using a
bronchoscopy brush for the subjects with asthma. Brushes were immediately placed in RNALater (Ther-
mo Fisher Scientific). RNA extraction was performed with the Qiagen RNeasy Mini Kit. Samples were
assessed for yield and quality using the 2100 Bioanalyzer (Agilent Technologies) and Qubit fluorometry
(Thermo Fisher Scientific). The RNA-seq library was prepared with the standard TruSeq RNA Sample
Prep Kit v2 protocol (Illumina). The mRNA libraries were sequenced on the Illumina HiSeq 2500 platform
with a per-sample target of 40 million—-50 million 100 bp paired-end reads. The data were put through
Mount Sinai’s standard mapping pipeline (37) (using Bowtie and TopHat and assembled into gene — and
transcription — level summaries using Cufflinks; refs. 38—40). Mapped data were subjected to quality con-
trol with tissFastQC and RNA-SeQC (41). R package edgeR (42) was used to normalize the dataset after
filtering out genes with low expression by retaining genes with counts per million (CPM) > 1 in at least 1
quarter of the total number of samples.

Nasal and bronchial microbiome profiling. For microbiome profiling, nasal samples were obtained from
children with severe persistent asthma and healthy controls using a sterile cotton swab, and bronchial
samples were obtained from children with severe persistent asthma by BAL of the right middle lobe
during bronchoscopy. As a precaution for potential false positives from contaminants, we included
blank swab controls with the clinical collections. DNA extraction from all swabs was performed using
Qiagen DNeasy Mini Kit. Sample DNA yield and quality was accessed using Nanodrop (Thermo Fish-
er Scientific). 16S rRNA library preparation was done according to the protocol described in the Illu-
mina MiSeq 16S Metagenomic Sequencing Library Preparation Protocol. Both agarose DNA gel elec-
trophoresis and Bioanalyzer were used for analysis and quantification of the final PCR product. Dual
indices and Illumina sequencing adapters were attached to the V3-V4 amplicon of 16S rRNA using
the Nextera XT Index Kit v2 (sets A and B, Illumina). PCR blanks were included with the samples for
sequencing as negative controls. DNA sequencing was performed on amplified 16S rRNA using the
Illumina MiSeq platform with 2 X 250bp paired-end reads. Primer regions and the low-quality bp at the
end of the reads were trimmed using SEQTK 1.2 (43). Reads were demultiplexed and filtered with the
minimum acceptable Phred quality score of 20 using Qiime 1.9.1 (44). Operational taxonomic units
(OTUs) were picked by clustering sequences at a 97% similarity threshold also using Qiime 1.9.1 (44)
with Greengenes reference data version 13.8. We subtracted OTU counts detected in the blank samples
to remove signal from potential contaminants.

Transcriptome analyses. The Principal Component Analysis (PCA) plots were generated using R (version
3.5.1, R Foundation for Statistical Computing). DE genes between the nasal and bronchial samples of chil-
dren with severe persistent asthma were analyzed as paired samples using R packages voom (45) and limma
(46) with FDR threshold < 0.05 and |log, fold change| > 1. Differential gene expression analysis of nasal
transcriptomes between children with severe persistent asthma and healthy controls was similarly performed
but as independent samples. Heatmaps for DE genes were plotted using R. The enrichments of the GO terms
were analyzed using DAVID 6.8 (21, 22).
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Microbiome diversity and composition analyses. Both a and [ diversities and genera composition analyses
were performed using Qiime 1.9.1 (44). To compare o diversities measured by Shannon diversity index and to
compare relative abundances in genera between the nasal and bronchial microbiomes in children with severe
persistent asthma, Wilcoxon signed-rank test for paired samples was performed, and P values were corrected
by FDR. To compare 3 diversities between groups, unweighted and weighted UniFrac distances were used for
1-way PERMANOVA tests with 1000 permutations. To compare o diversities between the nasal microbiome
in children with severe persistent asthma versus healthy controls measured by Shannon diversity index, the
Monte Carlo method was used with 1000 permutations, with correction for multiple comparisons by FDR.
LEfSe (26) was used to calculate differentially abundant genera between these 2 groups.

Microbiome network construction. Normalized 16S rRNA profiling summarizes bacterial abundance as
relative, meaning an increase in relative abundance of one taxon leads to a decrease in that of another
(23). Because of this, it is difficult to distinguish whether a negative association measured based on relative
abundance data represents a real competition between bacteria or false information due to flourishing of
one bacterium while the populations of others remain the same (23). Therefore, we used the permuta-
tion-renormalization and bootstrap (ReBoot) method, which constructs a null distribution using permuta-
tion-renormalization that reflects the compositional effect in relative abundance data and compares it with
a bootstrapped real distribution to suppress compositional effects in bacterial 16S profiling while estimating
the significance of associations (23).

Another characteristic of 16S rRNA data is sparsity. Correlation-based analyses are sensitive to the
double-zero problem, meaning a zero count may represent either true absence of taxa or a result of
undersampling so that comparing 2 zeros is not informative (23, 47, 48). To overcome the limitation of
correlation-based analysis on sparse 16S data, we used an ensemble of 4 different measures (ensemble4
method) (23) including 2 measures of correlation (Pearson and Spearman) and 2 measures of dissim-
ilarity (Bray-Curtis dissimilarity and Kullback-Leibler divergence; refs. 24 and 25). We use the word
“association” to refer to relationships significant by the above ensemble statistic. Before constructing
the networks, genera with zero counts in more than two-thirds of the total number of samples of each
airway site were removed (23). Permutations and bootstraps were performed 1000 times each, and
then the 2 distributions were compared using a z-test for each of the 4 methods (23). The associations
between bacterial genera from each of the 4 methods were ranked by correlation coefficients or dissim-
ilarity values and prefiltered so that, for each measure, the top 20% and bottom 20% of associations
were identified for input into the downstream network reconstruction algorithm. This prefiltering step
removed high FDR associations. Correlations or dissimilarity measures between genera that survived
the prefiltering of all 4 measures were included for further analyses. The P values from the 4 measures
were combined using Simes method (49), and the combined P values were FDR corrected. The network
was then defined by genera as nodes and edges between the nodes indicating associations with FDR <
0.05. Associations with FDR > 0.05 or with inconsistent Pearson and Spearmen correlation directions
were filtered out. Cytoscape 3.5.1 (50) was used for network visualization.

Microbiome-transcriptome network construction. Genera with zero counts in more than two-thirds of the total
number of samples of each airway site were removed (23). We used an ensemble of 3 different measures
(ensemble3 method) using the ReBoot method (23) spanning Spearman correlation, Pearson correlation, and
Kullback-Leibler divergence (25) analyses to assess associations between the normalized transcriptome data
and the microbiome relative abundance data. Compared with the ensemble4 method used for the microbiome
network construction, the Bray-Curtis dissimilarity (24) was excluded from ensemble3 because it is designed
to quantify the compositional dissimilarity of species populations between 2 sites, whereas transcriptome data
are not compositional. The downstream methods for constructing networks of associations between micro-
biome and their host transcriptome were the same as the methods for the networks of associations between
genera, except the prefiltering threshold for each of the 3 methods was made more stringent for the top 3%
and bottom 3% to remove high FDR associations. Cytoscape 3.5.1 (50) was used for network visualization.

Data availability. Data for this study are available at the NCBI Sequence Read Archive (SRA)
(https://www.ncbi.nlm.nih.gov/sra), accession no. PRINA601756 for transcriptome data and accession
no. PRINA601757 for microbiome data.

Statistics. The statistics used in this study are detailed in the following sections above: Transcriptome
Analyses, Microbiome Diversity and Composition Analyses, Microbiome Network Construction, and
Microbiome-transcriptome Network Construction.
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