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Human Dose–Response Data for Francisella tularensis
and a Dose- and Time-Dependent Mathematical Model of
Early-Phase Fever Associated with Tularemia After
Inhalation Exposure

Gene McClellan,1 Margaret Coleman,2,∗ David Crary,1 Alec Thurman,1

and Brandolyn Thran3

Military health risk assessors, medical planners, operational planners, and defense system de-
velopers require knowledge of human responses to doses of biothreat agents to support force
health protection and chemical, biological, radiological, nuclear (CBRN) defense missions.
This article reviews extensive data from 118 human volunteers administered aerosols of the
bacterial agent Francisella tularensis, strain Schu S4, which causes tularemia. The data set in-
cludes incidence of early-phase febrile illness following administration of well-characterized
inhaled doses of F. tularensis. Supplemental data on human body temperature profiles over
time available from de-identified case reports is also presented. A unified, logically consistent
model of early-phase febrile illness is described as a lognormal dose–response function for
febrile illness linked with a stochastic time profile of fever. Three parameters are estimated
from the human data to describe the time profile: incubation period or onset time for fever;
rise time of fever; and near-maximum body temperature. Inhaled dose-dependence and vari-
ability are characterized for each of the three parameters. These parameters enable a stochas-
tic model for the response of an exposed population through incorporation of individual-by-
individual variability by drawing random samples from the statistical distributions of these
three parameters for each individual. This model provides risk assessors and medical deci-
sionmakers reliable representations of the predicted health impacts of early-phase febrile
illness for as long as one week after aerosol exposures of human populations to F. tularensis.
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1. INTRODUCTION

Tularemia, caused by the bacterial agent Fran-
cisella tularensis, is an endemic zoonotic disease re-
ported in human and animal populations in the
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United States and around the world (World Health
Organization, 2007). Aerosols of F. tularensis are of
concern for medical personnel, laboratory workers
(Barry, 2005; Burke, 1977; Centers for Disease Con-
trol & Prevention [CDC], 2017; Rusnak et al., 2004;
U.S. Army Medical Research Institute of Infectious
Diseases (USAMRIID), 2009, 2010), and for defen-
sive preparedness planning for biological terrorism
and biological warfare. The analysis and modeling
presented in this article allow estimates of the patient
stream to be expected as a function of time after ex-
posure after an inhalation of F. tularensis resulting
from a biological attack. A statistical description of
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the onset of fever provides a prediction of the time
distribution of patients seeking treatment in routine
operations with no constraint on the availability of
medical care. Similarly, a statistical description of
how high the fever becomes, and how quickly with-
out treatment, provides an estimate of the time dis-
tribution of operational casualties to be expected if
medical care is limited or unavailable during combat
operations. This article describes the development of
the mathematical models from available data on hu-
man exposures and presents illustrative calculations
for a company-sized unit.

1.1. Francisella tularensis and Human Tularemia

Tularemia has an extensive literature base sum-
marized in excellent reviews (Adamovicz, Wargo,
& Waag, 2006; Dembek, 2007; Dembek, Pavlin, &
Kortepeter, 2007; Hepburn, Friedlander, & Dembek,
2007; Lyons & Wu, 2007; Sinclair, Boone, Green-
berg, Keim, & Gerba, 2008). F. tularensis is thought
to infect up to 250 animal hosts, which is more than
any other known zoonotic pathogen (Dempsey et al.,
2006). Early-phase tularemia manifests as febrile
illness (fever and flu-like symptoms) and then can
develop into several different forms (Dembek, 2007).
The predominance of tularemia cases in humans re-
ported worldwide are associated with arthropod vec-
tors (ticks, mosquitoes, flies) or contact with infected
small mammals (e.g., rabbits, hares, and voles). Most
recorded cases are the glandular/ulceroglandular
form of tularemia (World Health Organization,
2007). While tularemia after inhalation exposure is
rare, it can occur after occupational exposures under
specific conditions and is linked to the aerosolization
of culture materials in laboratories. In addition,
humans can be exposed to agricultural dusts con-
taminated by infected or dead animals (Dahlstrand,
Ringertz, & Zetterberg, 1971; Halsted & Kulasinghe,
1978; Martone, Marshall, Kaufmann, Hobbs, &
Levy, 1979; Sunderrajan, Hutton, & Marienfeld,
1985; Syrjälä, Kujala, Myllylä, & Salminen, 1985;
Feldman et al., 2001; Eliasson et al., 2002; CDC, 2002;
Hauri et al., 2010; Kaye, 2005; Shapiro & Schwartz,
2002; Simpson, 1929; Siret et al., 2005). Tularemia
is highly infectious by inhalation; as few as 10–50
F. tularensis organisms are likely to cause febrile
illness (Anno et al., 1998; Saslaw & Carhart, 1961).
However, it is not communicable person to person,
based on clinical and epidemiologic evidence (CDC,
2003; Dahlstrand et al., 1971; Eigelsbach, Saslaw,
Tulis, & Hornick, 1968; Hepburn et al., 2007).

1.2. Documenting Fever as an Indicator of Illness
and Performance Degradation

Early-phase tularemia is characterized by abrupt
onset of febrile illness (sustained high fever within
a day or so) that can be self-limiting and is rarely
fatal with prompt medical care (Adamovicz et al.,
2006; Dembek, 2007; Hepburn et al., 2007). Cases
treated promptly with effective antibiotics typically
became afebrile rapidly, for example, within 1–3 days
of streptomycin treatment (Hughes, 1963; Martone
et al., 1979; Overholt et al., 1961). For any of the
forms of tularemia, systemic progression in the ab-
sence of prompt medical treatment can involve all
the major organ systems, including the pulmonary
system (Weinstein & Alibek, 2003). Virulence of F.
tularensis is variable. Two of four F. tularensis sub-
species (Type A, subspecies tularensis; and Type B,
subspecies holarctica or paleoarctica) cause most hu-
man disease in the United States (CDC, 2003). The
remaining two subspecies (novicida and mediasiat-
ica) are infrequently associated with human disease.
This study focuses on a virulent Type A strain of F.
tularensis subsp. tularensis (Schu S4).

In the 1950s, high rates of laboratory-associated
infections among workers handling F. tularensis cul-
tures, despite repeated vaccinations (Eigelsbach,
Tigertt, Saslaw, & McCrumb, 1962), prompted an ex-
tensive, multiyear, vaccine research program (Oper-
ation Whitecoat) carried out by U.S. Army scientists
at Fort Detrick, Maryland. To date, only subsets of
the human data generated are described in the peer-
reviewed literature (Alluisi, Beisel, Bartelloni, &
Coates, 1973; Hornick & Eigelsbach, 1966; Pekarek,
Bostian, Bartelloni, Calia, & Beisel, 1969; Saslaw,
Eigelsbach, Prior, Wilson, & Carhart, 1961; Sawyer,
Dangerfield, Hogge, & Crozier, 1966; Shambaugh &
Beisel, 1967) and these publications, as reports on
prospective vaccine studies, focus primarily on vac-
cinated subjects with limited discussion of the unvac-
cinated controls.

More than two decades later, faced with a resur-
gent international threat of biological warfare, the
Defense Nuclear Agency (DNA) initiated a retro-
spective study of the Operation Whitecoat data us-
ing de-identified clinical records obtained from the
U.S. Army Medical Institute of Infectious Diseases
(USAMRIID) at Fort Detrick, Maryland. The DNA
research teams were led by Arthur P. Deverill and
George H. Anno with assistance from former U.S.
Army researchers Henry T. Eigelsbach and Harry G.
Dangerfield. Access to clinical records was granted
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for the retrospective biodefense study on febrile
illnesses in unvaccinated volunteers administered
aerosols of one of three agents causing treatable hu-
man fevers: tularemia caused by F. tularensis; Q fever
caused by Coxiella burnetii; and staphylococcal en-
tertoxin B (SEB) intoxication caused by Staphylo-
coccus aureus. The primary purpose of the DNA
study was to understand and quantify human vulner-
ability to bioagents of unvaccinated and untreated
personnel and to predict the impact on military mis-
sion effectiveness via performance degradation as-
sociated with febrile illness. In 1996, DNA became
the Defense Special Weapons Agency (DSWA). In
1998, a DSWA technical report including the data
for Q fever and SEB, and a more detailed analy-
sis of the data for tularemia, was published (Anno
et al., 1998). For tularemia, the data for a total of 118
unique clinical records were compiled for volunteers
inhaling doses ranging from 10 to 62,000 F. tularen-
sis organisms (Anno et al., 1998). Clinical records for
the other two febrile illnesses (Q fever and SEB in-
toxication) were also compiled and analyzed but are
not summarized herein. Body temperature, severity
of signs and symptoms, and performance degradation
experienced by febrile volunteers were well corre-
lated, and temporal profiles differed by agent/illness.
In 1998, DSWA was merged into the Defense Threat
Reduction Agency (DTRA).

The research effort reported by Anno et al.
(1998) was closely coordinated by DTRA over the
years with health care operations of the U.S. Army
Office of the Surgeon General (OTSG). The refine-
ments of the modeling for biological warfare agent
effects are described in an OTSG report by Anno
et al. (2005). The health effects models developed
from these research efforts were utilized for casualty
estimation to guide NATO medical planning (North
Atlantic Treaty Organization, 2007). All results pre-
sented in this article are original in the sense that
they have not previously been reported in the peer-
reviewed literature. All results are either the work of
the current authors or are drawn from the two Anno
reports (Anno et al., 1998, 2005) for which one cur-
rent author (GM) was also a co-author.

1.3. Modeling Dose- and Time-Dependence of
Febrile Illness

Commanders and other decisionmakers require
knowledge of dose- and time-dependencies for de-
termining potential risk to health of military person-
nel and mission accomplishment over time after ex-

Fig. 1. Conceptual diagram for body temperature profile parame-
ters in early-phase fever.

posures to aerosols of F. tularensis and other agents.
The data presented in this article were used to sup-
port a project at the Army Public Health Center to
better understand the health effects of various in-
haled doses to biological warfare agents in a military
context. This article presents human dose–response
data for tularemia by the inhalation route and de-
scribes the development of a model for early-phase
tularemia. Disease incidence (probability of illness
given dose) is modeled using the lognormal form of
the simple probit model. The fever profile for early-
phase febrile illness is characterized as illustrated in
Fig. 1 using statistical distributions for three fever
parameters (incubation period [IP] or time to onset
of fever; near-maximum body temperature for early-
phase illness; and rise time of temperature from on-
set to near-maximum). The use of Operation White-
coat data to support stochastic simulation of affected
personnel in a military unit after an attack with F. tu-
larensis is illustrated in Fig. 2. The data (white boxes
in the figure) for inhaled dose and the number of sub-
jects with and without febrile illness determine a log-
normal dose–response function, that is, a disease in-
cidence model as indicated in the central gray box
of the left-hand section of the figure. The fever data
from those having febrile illness are used to deter-
mine three dose-dependent, statistical distributions
of fever parameters as illustrated in the lower part
of the right-hand section. These three models and
the dose–response function (light gray boxes in the
figure) enable a stochastic simulation of illness suf-
fered by individuals in a unit exposed to F. tularensis
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as indicated by the upper box in the right-hand sec-
tion of the figure.

2. METHODS

This section describes the data analyzed and the
mathematical methods used to develop a dose- and
time-dependent mathematical model of early-phase
fever associated with tularemia after inhalation
exposure.

2.1. Human Dose–Response Data

The human data set includes 118 unvaccinated,
healthy adult male volunteers from studies at Ohio
State University (22 volunteers), University of Mary-
land (23 volunteers), and U.S. Army Medical Unit,
Fort Detrick (73 volunteers) (Anno et al., 1998).
Case reports include details of the signs and symp-
toms of illness recorded periodically after adminis-
tration of known inhaled doses (dynamic aerosols
of 1–5 μ diameter particles generated by nebulizer
[modified Henderson-type apparatus using Collison
spray] administered via tight-fitting mask). The cri-
terion for determining a case of febrile illness was
“observation of three or more sequential body [rec-
tal] temperature measurements that met or exceeded
100 °F.” For those who became ill, measurements
continued approximately every six hours until recov-
ery after antibiotic administration. Antibiotics were
administered when fever plateaued at a high value

after approximately 24 hours. Streptomycin or tetra-
cycline was administered to halt disease progression
and promote rapid and full recovery.

Of the 118 subjects exposed, 112 volunteers
met the clinical case definition (see Table I). The
frequency of signs and symptoms of febrile illness
reported in the clinical records of these 112 sub-
jects is illustrated in Fig 3. Fever is the single most
comprehensive indicator of the degree of illness and
subsequent degradation in performance (Anno et al.,
1998, 2005). Fever profiles for the 112 volunteers with
febrile illness are available in the clinical records with
time-series data for body temperature recorded ap-
proximately every six hours starting at time of expo-
sure. For the six volunteers who did not become ill,
the temperature measurements continued for 10–12
days after exposure until the likelihood of illness had
passed (Saslaw et al., 1961). These individuals were
given terminal antibiotic therapy before discharge
from the study (Saslaw et al., 1961). A typical tem-
perature chart for a patient is illustrated in Fig. 4.

For each of the 112 febrile volunteers, parame-
ters defining the fever profile are determined from
the clinical charts. For the IP (onset time t0 in days),
the line connecting the nearest two points of the se-
quence of rising temperature measurements above
normal is used to extrapolate for the time point of
intersection with normal temperature, assumed to be
98.6 °F. Generally, these estimates of IPs describe
the time at which the body temperature began to
rise, then persisted above 100 °F for 18 hours. The

Fig. 2. Application of empirical data from Operation Whitecoat volunteers to stochastic simulation of military unit response to a bioattack.



Human Dose–Response Data for Francisella tularensis 5

T
ab

le
I.

D
os

e–
R

es
po

ns
e

D
at

a
Se

tf
or

E
ar

ly
-P

ha
se

F
eb

ri
le

Il
ln

es
s

V
ol

un
te

er
In

de
x

E
st

im
at

ed
In

di
vi

du
al

In
ha

le
d

D
os

e
(O

rg
an

is
m

s)
F

eb
ri

le
Il

ln
es

s
V

ol
un

te
er

In
de

x

E
st

im
at

ed
In

di
vi

du
al

In
ha

le
d

D
os

e
(O

rg
an

is
m

s)
F

eb
ri

le
Il

ln
es

s
V

ol
un

te
er

In
de

x

E
st

im
at

ed
In

di
vi

du
al

In
ha

le
d

D
os

e
(O

rg
an

is
m

s)
F

eb
ri

le
Il

ln
es

s
V

ol
un

te
er

In
de

x

E
st

im
at

ed
In

di
vi

du
al

In
ha

le
d

D
os

e
(O

rg
an

is
m

s)
F

eb
ri

le
Il

ln
es

s

1
10

N
o

31
2,

30
0

Y
es

61
23

,4
68

Y
es

91
27

,0
00

Y
es

2
10

N
o

32
2,

34
3

Y
es

62
23

,5
07

Y
es

92
27

,2
46

Y
es

3
10

Y
es

33
2,

37
9

Y
es

63
23

,6
58

Y
es

93
27

,9
57

Y
es

4
12

N
o

34
2,

40
0

Y
es

64
23

,7
55

Y
es

94
28

,2
48

Y
es

5
13

Y
es

35
2,

59
5

Y
es

65
23

,8
36

Y
es

95
28

,2
80

Y
es

6
13

Y
es

36
2,

76
8

Y
es

66
24

,1
60

Y
es

96
28

,5
20

Y
es

7
14

Y
es

37
3,

15
8

Y
es

67
24

,3
52

Y
es

97
28

,5
60

Y
es

8
16

Y
es

38
8,

96
0

Y
es

68
24

,3
61

Y
es

98
28

,6
03

Y
es

9
17

N
o

39
10

,0
00

Y
es

69
24

,6
60

Y
es

99
29

,0
00

Y
es

10
18

Y
es

40
16

,4
48

Y
es

70
24

,7
25

Y
es

10
0

29
,1

48
Y

es
11

20
Y

es
41

18
,4

80
Y

es
71

25
,0

00
Y

es
10

1
30

,0
00

Y
es

12
20

N
o

42
18

,9
76

Y
es

72
25

,0
00

Y
es

10
2

30
,0

00
Y

es
13

23
Y

es
43

19
,6

42
Y

es
73

25
,0

00
Y

es
10

3
30

,0
23

Y
es

14
23

Y
es

44
20

,2
02

Y
es

74
25

,0
00

Y
es

10
4

30
,1

56
Y

es
15

25
Y

es
45

20
,3

52
Y

es
75

25
,0

00
Y

es
10

5
30

,1
87

Y
es

16
30

Y
es

46
20

,6
40

Y
es

76
25

,0
00

Y
es

10
6

30
,6

18
Y

es
17

45
N

o
47

21
,2

80
Y

es
77

25
,0

00
Y

es
10

7
30

,7
52

Y
es

18
46

Y
es

48
21

,7
35

Y
es

78
25

,0
00

Y
es

10
8

32
,0

00
Y

es
19

46
Y

es
49

21
,7

51
Y

es
79

25
,0

68
Y

es
10

9
32

,4
66

Y
es

20
48

Y
es

50
22

,0
00

Y
es

80
25

,0
88

Y
es

11
0

33
,0

24
Y

es
21

50
Y

es
51

22
,0

16
Y

es
81

25
,5

33
Y

es
11

1
36

,3
68

Y
es

22
52

Y
es

52
22

,1
60

Y
es

82
25

,5
97

Y
es

11
2

37
,6

63
Y

es
23

31
5

Y
es

53
22

,1
63

Y
es

83
26

,2
75

Y
es

11
3

44
,0

00
Y

es
24

35
4

Y
es

54
22

,8
25

Y
es

84
26

,3
02

Y
es

11
4

45
,0

00
Y

es
25

36
0

Y
es

55
22

,8
54

Y
es

85
26

,3
08

Y
es

11
5

45
,0

00
Y

es
26

39
8

Y
es

56
23

,0
76

Y
es

86
26

,3
68

Y
es

11
6

59
,0

00
Y

es
27

1,
88

1
Y

es
57

23
,1

26
Y

es
87

26
,4

10
Y

es
11

7
59

,0
00

Y
es

28
1,

95
0

Y
es

58
23

,1
68

Y
es

88
26

,4
73

Y
es

11
8

62
,0

00
Y

es
29

2,
10

0
Y

es
59

23
,2

35
Y

es
89

26
,7

85
Y

es
30

2,
25

3
Y

es
60

23
,3

96
Y

es
90

26
,9

87
Y

es

N
ot

e:
Su

m
m

ar
iz

ed
fr

om
A

nn
o

et
al

.
(1

99
8)

.
D

at
a

w
er

e
co

lle
ct

ed
at

th
e

U
.S

.
A

rm
y

M
ed

ic
al

U
ni

t,
F

t.
D

et
ri

ck
,

or
at

O
hi

o
St

at
e

U
ni

ve
rs

it
y

or
th

e
U

ni
ve

rs
it

y
of

M
ar

yl
an

d
in

co
lla

bo
ra

ti
on

w
it

h
F

t.
D

et
ri

ck
re

se
ar

ch
er

s.
Su

bs
et

s
of

th
e

da
ta

ha
ve

be
en

pr
ev

io
us

ly
pu

bl
is

he
d

(A
llu

is
ie

t
al

.,
19

73
;H

or
ni

ck
&

E
ig

el
sb

ac
h,

19
66

;P
ek

ar
ek

et
al

.,
19

69
;S

as
la

w
et

al
.,

19
61

;S
aw

ye
r

et
al

.,
19

66
;S

ha
m

ba
ug

h
&

B
ei

se
l,

19
67

).



6 McClellan et al.

Fig. 3. Tularemia sign/symptom frequencies based on 112 unvac-
cinated subjects who developed fever after inhaled doses of F. tu-
larensis strain Schu S4 (fig. 2–1 in Anno et al., 1998).

near-maximum body temperature for high fever (Th

in °F) is determined as the first temperature value af-
ter onset that is followed by three lower values. The
rise time for high fever (�t in days) is defined as the
time interval from fever onset until the time (th in
days) at which the near-maximum body temperature
is reached.

Table II. Parameters for the Lognormal Dose–Response
Function for the Probability of Illness

Endpoint/Parameter Values (95% Confidence Interval)

ED10 2.1 (0.1, 15.2)
ED50 9.8 (2.0, 27.1)
ED90 45 (22, 217)
α –1.910
β 0.8376
μ 2.2803
σ 1.1939

Note: Summarized from Anno et al. (1998), which provides addi-
tional information on parameter uncertainties.

2.2. Mathematical Models

This subsection describes the mathematical
methods used to develop a disease incidence model,
a statistical characterization of the early fever pro-
file among the Operation Whitecoat volunteers, and
a stochastic model of the early fever profile for
tularemia.

2.2.1. Disease Incidence Model

The data for incidence of tularemia (febrile ill-
ness or no febrile illness) for 118 unvaccinated sub-
jects as compiled from Operation Whitecoat and
analyzed by Anno et al. (1998) are listed in Table I.
Illness is determined by the criterion described above

Fig. 4. Clinical record body temperature chart redrawn from actual clinical record for human volunteer administered aerosolized F. tularen-
sis strain Schu S4 (fig. 2–5 in Anno et al., 1998).
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for febrile illness following individual inhaled doses
from 10 to 62,000 F. tularensis organisms. The re-
ported unit of measure for doses is “organisms.” To
retain fidelity in the interpretation of the original
data, the term “organisms” will be used through-
out this article. However, the term in this context
is considered equivalent to viable organisms or the
more usual “colony forming units (CFUs).” For in-
haled doses �46 organisms, all subjects became ill
(101 of 118 volunteers documented in Table I). Anno
et al. obtained empirical dose–response relationships
for a subset of the data, excluding the doses above
400 organisms that caused 100% illness. The data for
doses below 400 organisms (first 26 doses in Table I)
were analyzed using maximum likelihood analysis for
multiple forms of the probit model (normal, lognor-
mal, Weibull, logistic, and log-logistic). The lognor-
mal and log-logistic models best described the data.
The lognormal model was carried forward in subse-
quent analyses by DTRA and OTSG and is the basis
of this work.

Let N be the integer number of organisms in-
haled by an individual in a population whose mem-
bers are all exposed to the same aerosol environ-
ment. Because of randomness in the environment
(such as air turbulence) and randomness among indi-
viduals (such as breathing rate and nasal geometry),
there will be variation in N across the population. Let
the mean number of inhaled organisms (averaged
over the population) be n =< N>, where 0 ≤ n ≤
∞. The lognormal form of the dose–response func-
tion assumes that the incidence of febrile illness in
the population is given by the cumulative normal dis-
tribution of the logarithm of the mean inhaled num-
ber of organisms. (We follow Anno et al. in using the
natural logarithm as the dose parameter d = ln(n) .)
With these assumptions, the incidence of illness is
given by the probability function �(d):

� (d) =
(√

2πσ
)−1 d

∫
−∞

exp

[
− 1

2

(
x − μ

σ

)2 a + b
c

]
dx, d = ln (n)

= 1
2

[
1 + erf

(
d − μ√

2σ

)]
, −∞ ≤ d ≤ ∞, 0 ≤ � ≤ 1,

where μ and σ are the mean and standard deviation
of the lognormal distribution, respectively. Hence, μ

is the logarithm of the median effective dose, that is,
the logarithm of the dose causing illness in half the
exposed population. The probit slope of the lognor-
mal distribution is σ−1. Defining new variables α and
β such that

α = −μ

σ
, β = 1

σ
,

μ = −α

β
, σ = 1

β

gives an alternative form of the incidence of febrile
illness:

� (d) = 1
2

[
1 + erf

(
α + βd√

2

)]
,

where α and β are the probit parameters derived
by maximum likelihood analyses of the quantal
response data. Table II presents values for these
parameters.

It is important to remember that the organism
doses listed in Table I are estimated from experimen-
tal conditions rather than being an actual count of
inhaled organisms. Therefore, in terms of the vari-
ables defined above, the listed doses are values of n
rather than N. With this in mind, the lognormal dose–
response function �(d) serves as either the incidence
of illness in a population or the probability that an
individual will become ill.

2.2.2. Statistical Characterization of the Early
Fever Profile

Dose-dependent parameter relationships for the
112 febrile volunteers were developed based on
linear regression models for various transformations
of the following three parameters:
t0 = IP (or onset time) relative to time of exposure

(days)
Th = near-maximum body temperature (°F)
�t = rise time, the interval between onset and

reaching near-maximum body temperature
(days)

A set of regression models for t0, Th, and �t was
developed that led to dose-parameterized probability
distributions for these three quantities. These models
may be used for Monte Carlo simulation of the distri-
bution of body temperature across the individuals in
an exposed population, parameterized by time after
exposure and dose.

The general form of the regression models for
parameter Xi as a function of dose n,

Xi = ai + bi ln (n) + εi ,

is a linear function of the natural logarithm of the
dose with intercept, slope bi, and a random contri-
bution εi to be determined through maximum like-
lihood analysis. The Xi are related to t0, Th, and
�t by nonlinear transformations chosen to result in
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normally distributed variables, either logarithmic or
logistic. The time parameters themselves do not have
Gaussian sampling distributions because they are
constrained to be nonnegative. Similarly, the fever
rise cannot be normally distributed because it must
also be nonnegative and has an upper limit. Loga-
rithmic and logistic transformations are used as de-
scribed below so that the transformed quantities Xi

may be reasonably assumed to be normal deviates
for the purpose of simulation. In particular, it is as-
sumed that the Xi are normally distributed as Xi ∼
N(ai + bi ln(n), σ 2

i ) and that the residuals εi = Xi −
(ai + bi ln(n)) are jointly distributed normal deviates
with mean zero and standard deviation σi indepen-
dent of ln(n). The parameters ai , bi , σi are taken to
be their least-squares estimates âi , b̂i , σ̂i and the lin-
ear equations Xi = âi + b̂i ln(n) + N(0, σ̂ 2

i ) are used
to generate random samplings of the quantities Xi .

The specific regression models used are based on
the following definitions:

(i) X1 = ln(t0) is a Gaussian variate whose mean,
μ1, is a linear function of ln(n) and whose vari-

ance, σ 2
1 , is independent of inhaled dose, n (i.e.,

homoscedasticity).
(ii) X2 = ln(�t/(2.5 − �t )), where �t = th − t0

is a Gaussian variate whose mean, μ2, is a lin-
ear function of ln(n) and whose variance, σ 2

2 ,
is also independent of inhaled dose, n.

(iii) The variates X1 and X2 have a joint bivari-
ate Gaussian distribution function entirely de-
scribed by the four quantities, μ1 = μ1 (n),
μ2 = μ2 (n), σ1, and σ2.

(iv) X3 = ln((Th − 100)/(106 − Th )) is a Gaussian
variate whose mean, μ3, is a linear function of
ln(n) and whose variance, σ 2

3 , is independent of
inhaled dose, n. Furthermore, X3 is presumed
to be independent of X1 and X2 and may there-
fore be treated altogether separately.

Mathematically, these three definitions may be
equivalently stated as:

(i) X1 = ln(t0) = a1 + b1 ln(n) + ε1.

(ii) X2 = ln(�t/(2.5 − �t )) = a2 + b2 ln(n) + ε2,
where ε1 and ε2 are joint Gaussian zero-mean
variates with standard deviations σ1 and σ2

(both independent of inhaled dose). In prac-
tice, of course, the population parameters σ1

and σ2 must be replaced by reasonable esti-
mators (i.e., their sampling statistics) that are
byproducts of the usual regression procedure.

(iii) X3 = ln((Th − 100)/(106 − Th )) = a3 + b3

ln(n) + ε3 , where ε3 is a zero-mean Gaussian
variate with standard deviation σ3.

As consequences of these modeling assumptions,
the following are guaranteed:

(i) t0 = exp(X1) > 0, for all inhaled doses and all
“draws” on the Gaussian variate X1 (i.e., the
entire range of values of the random variable t0
consists of positive values).

(ii) th − t0 ≡ �t = 2.5/(1 + exp(−X2 )) for all in-
haled doses and all “draws,” that is, the en-
tire range of values of the random variable
th − t0 consists of positive values. Hence, if
first a value of t0 = exp(X1) is drawn and
then a value of �t = 2.5/(1 + exp(−X2 )),
the value of th = t0 + �t will necessarily be
greater than t0. Furthermore, by virtue of
the logistic form of X2, the values of �t

obtained will be constrained to lie in the
range 0 < �t < 2.5 days, which is consistent
with the two-part formula utilized above. Th =
100/(1 + exp(X3 ) ) + 106/(1 + exp(−X3)) is

constrained to lie in the range 100 ◦F < Th <

106 ◦F for all doses and all sample “draws”
from the Gaussian variate X3. The upper limit
of 106 °F is a physiologically plausible maximal
value. The lower limit of 100 °F is consistent
with the definition of illness used to analyze
the Operation Whitecoat data. The upper con-
straint of 2.5 days on the value of the fever rise
time �t is a judiciously chosen value greater
than the maximum value of 2.3 days appearing
in the data. Sensitivity to this value or to the
chosen limits on the high temperature Th was
not investigated.

In the original analysis, Anno et al. (2005) tested
for a correlation between the unexplained variance
ε in the variates X1 and X2 but did not find one.
They also verified homoscedasticity as defined above
for X1, X2 and X3. The Operation Whitecoat data
fits corresponding to the linear regressions discussed
above are described in Section 3.

2.2.3. Stochastic Model of Fever Profile and
Application to Monte Carlo Simulation

Using the variables described above, Anno et al.
(1998) model the time-dependent body temperature
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T(t) after onset of febrile illness with the following
equation:

T (t) = 98.55 + Tm − 98.55

1 +
(

Tm−T0
T0−98.55

)
e−k(t−t0)

(t > t0),

where normal body temperature is T0 = 98.6 °F (the
value at t = t0) and the maximum body tempera-
ture approaches a value of Tm at late times (t >> t0).
This mathematical form allows the fever in the initial
phase of illness to rise exponentially with a charac-
teristic rate k after onset, but then level out at the
maximum value Tm as illustrated in Fig. 1. This equa-
tion offers a reasonable analytic form to empirically
describe the initial phase of illness. Anno et al. (1998)
motivate this form by analogy with the similar math-
ematical form arising from the logistic equation for
self-limiting bacterial growth first proposed by Ver-
hulst (Verhulst, 1838). The value of 98.55 °F appear-
ing in the equation is a judiciously chosen reference
value that is a small increment �T0 = 0.05 °F be-
low normal body temperature. Small in this context
means that �T0 is much smaller than the maximum
fever rise Tm – T0.

We may find the value of k by using the high (i.e.,
near-maximum) temperature Th defined above from
the clinical data. This value is reached at a time th =
t0 + �t, so Th = T(t0 + �t). Using these expressions
in the equation above and solving for k, we find:

k = �t
−1 ln

(
20 (Th − 98.55) (Tm − T0)

(Tm − Th)

)
.

From the Operation Whitecoat data, Anno et al.
(1998) estimated that Tm − Th

∼= 0.17 ◦F. An alterna-
tive approach to modeling the fever profile would be
to estimate the parameters of the logistic equation di-
rectly from the Operation Whitecoat data.

The time profile of early-phase fever may be es-
timated from the values of the time of onset t0, the
near-maximum body temperature Th, and the rise
time after onset to reach near-maximum tempera-
ture, �t. For an exposed population, random draws
of these three parameters for each individual given
his dose may be used to generate a stochastic simula-
tion of the fever profile for each member of the pop-
ulation. Taken together these simulations constitute
a Monte Carlo simulation of the response of the pop-
ulation. Criteria regarding consequences of the fever
may be used to predict outcomes such as the patient
stream resulting from exposure of a military unit as
described in Section 3.3. Although such Monte Carlo
simulations could be elaborated to account for model

Fig. 5. Dose–response model for human tularemia by the inhala-
tion route. The median effective dose (ED50) is 9.8 organisms (or
CFUs).

parameter uncertainties derived from the Operation
Whitecoat data, simulations reported here are based
on the central values of the parameters.

3. RESULTS

The Operation Whitecoat human data set for un-
vaccinated, healthy adult males informs generation
of a model of the early phase of febrile illness associ-
ated with tularemia, which includes a dose–response
model for illness and a stochastic model of early-
phase fever (Fig. 2). The data for 112 febrile volun-
teers supports both time- and dose-dependent anal-
ysis using the model for the febrile illness profile
(Fig. 4) described above with three parameters: IP
(to); rise time for high fever (�t ); and near-maximum
(high) temperature (Th). All three of these charac-
teristic parameters are subject to dose dependence
and random variation from individual to individual.
Analysis of these extensive human data provides
well-founded mathematical descriptions of these pa-
rameters and their variability.

3.1. Dose–Response Model for Fever

The deterministic dose–response function is il-
lustrated in Fig. 5 for the incidence of febrile ill-
ness associated with inhaled doses of F. tularen-
sis. A lognormal dose–response function is fitted
via maximum likelihood analysis to the human data
from the 26 volunteers administered the lowest doses
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(estimated inhaled doses 10–398 organisms; Table I),
six of whom did not develop febrile illness.

The best fit parameters μ= 2.28 and σ = 1.19 cor-
respond to a median effective dose (ED50) for febrile
illness of 9.8 organisms for F. tularensis strain Schu
S4, in agreement with the analysis reported by Anno
et al. (1998), who cite a 95% confidence interval on
the ED50 from 2.0 to 27, as shown in Table II. For
display purposes in Fig. 5, the 26 data points are di-
vided into six dose ranges: 1–10, 11–15, 16–20, 21–30,
31–60, and 61–400. The probability of response for
each range is the average of the response (0 for no,
1 for yes) for the subjects in the range. The average
response for each range is plotted at the geometric
mean of the subject doses within the range. The error
bars on the average response represent the 68% con-
fidence interval band according to the Wilson score
interval for a binomial distribution.

3.2. Regression Parameters for Initial Fever Profile

The data for the 112 volunteers who developed
early-phase febrile illness (Table I) inform develop-
ment of the regression models for the three fever pro-
file parameters (to; �t; Th). The regression models for
all three parameters provide reliable representations
(p < 10−6) of the fever profiles. Table III presents
the regression parameters for the Gaussian variants
determining the three fever profile parameters as de-
scribed above.

The regression models for the dose-dependent
fever parameters for early-phase illness are plotted in
Figs. 6–8. The dots represent the actual observations
for each of the 112 volunteers who developed febrile
illness. The central curves represent the median re-
sponse as a function of inhaled dose. At a given in-
haled dose, individual variability about the median
value is modeled with a dose-independent Gaussian
variate as described above. The inner pair of curves
represents the 95% confidence band for the median
value of the dose-dependent parameters. The outer

Fig. 6. Dose-dependent incubation period (onset time) of febrile
illness in 112 human volunteers who developed tularemia after ad-
ministration of aerosols of F. tularensis strain Schu S4 (fig. 5–16 in
Anno et al., 2005).

Fig. 7. Dose-dependent rise times to high (near-maximum) fever
for early-phase tularemia in human volunteers administered
aerosols of F. tularensis strain Schu S4 (fig. 5–17 in Anno et al.,
2005).

Table III. Regression Parameters for the Gaussian Variants Determining the Three Fever Profile Parameters

Coefficients Coefficient Error Statistics Estimator of σ

Variate a b σ a σ b Cov(a,b) Syx

X1 = ln(t0) 1.981 –0.091 0.070 0.008 –0.00052 0.2048
X2 = ln( �t

2.5−�t
) –1.092 0.101 0.337 0.037 –0.01192 0.9826

X3 = ln( Th−100
106−Th

) –1.332 0.162 0.257 0.028 –0.00694 0.7495

Note: Summarized from Anno et al. (2005), which provides additional information on parameter uncertainties.
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Fig. 8. Logistic model for dose-dependent near-maximum body
temperature as a function of inhaled dose (fig. 5–19 in Anno et
al., 2005).

pair of curves represents the 95% confidence region
for predictions of single simulated observations, as a
function of inhaled dose, based on the distribution of
parameters for the febrile volunteers.

The results for the IP (relative to exposure) are
illustrated in Fig. 6. The central curve is the median
onset time as a function of inhaled dose. The inner
pair of curves represents the 95% confidence band
for the mean value of the dose-dependent onset time.
The outer pair of curves represents the 95% confi-
dence region for predictions of single simulated ob-
servations, as a function of inhaled dose, based on
the distribution of incubation times for volunteers.
Note that variability in IP is higher at lower doses,
with prediction intervals ranging from 4–10 days at
the lowest dose tested and 2–5 days at the highest
dose tested.

The fever rise time model is illustrated in Fig. 7.
The analysis is based on the same logistic function
as used for the near-maximum temperature. In this
case, the possible range of values is assumed to be
limited to between 0 and 2.5 days. As in the previous
figure, Fig. 7 includes the actual data points for fever
rise time for each febrile subject, the dose-dependent
median curve and its 95% confidence band, as well
as the pair of outer curves giving the 95% confidence
band for prediction intervals for single observations
of rise time as a function of inhaled dose. Note that
as inhaled dose increases (Fig. 7), so does the time to
reach the maximum temperature (rise time). While
the time to onset decreases with increasing inhaled

Fig. 9. Stochastic simulation of the early-phase fever profiles for
10 individuals with tularemia after an inhaled dose of 5,000 organ-
isms, mean inhaled dose.

dose (Fig. 6), there is a trend of increasing time re-
quired to reach the near-maximum temperature (rise
time; Fig. 7). Though this may seem counterintuitive,
time is required physiologically to raise body temper-
ature. It appears from these data that the higher the
temperature, the longer the time required to reach
that higher temperature. Note that variability in rise
time does not appear to increase markedly with de-
creasing dose.

The near-maximum body temperature model for
those 112 volunteers who became ill is illustrated in
Fig. 8. Note that the minimum value for the near-
maximum temperature is 100 °F by definition. In
the analysis, it is assumed that the body tempera-
ture could not go above 106 °F. A logistic function
is applied to the data to transform the resulting 6 °F
range to a variable ranging from –� to +� in or-
der to perform a standard linear regression on the
data. As in the two previous figures, Fig. 8 displays
the actual data for near-maximum temperature as
dots corresponding to each febrile subject, the dose-
dependent median curve and its 95% confidence
band, as well as the outer pair of curves giving the
95% confidence band for the prediction intervals for
single observations of near-maximum temperature as
a function of inhaled dose. Note that variability in
near-maximum body temperature does not appear to
increase markedly with decreasing dose.

3.3. Application of the Stochastic Fever
Profile Model

Simulations of illness using the stochastic fever
profile model for the same inhaled dose (5,000 or-
ganisms) for a group of 10 individuals are illustrated



12 McClellan et al.

in Fig. 9. The figure shows onset of illness ranging
from 2.5 to 4.5 days and a maximum fever ranging
from 102 to 105 °F among the 10 individuals. The in-
dividual variations in IP, fever rise time, and peak
fever are not correlated at a given dose and so are
drawn as independent variates from the distributions
described above for the Operation Whitecoat data.
The individual-to-individual degree of fever varies
even when all receive the same dose (Fig. 9). A simi-
lar procedure may be followed for the more realistic
situation where meteorology and location of troops
results in a wide range of doses encountered by each
individual. In this case, the varying dose from individ-
ual to individual would result in even more variation
in fever profiles than shown by Fig. 9.

Stochastic simulations using the model of early-
phase illness for pneumonic tularemia illustrated in
Fig. 9 can be used to make Monte Carlo predictions
of the patient stream for routine and combat situa-
tions. In these two situations, the degree of fever that
causes an individual to seek medical care may differ.
The left-hand column of three panels in Fig. 10 pro-
vides a Monte Carlo simulation of the response of
a company-sized unit (90 individuals) given a dose
of 10 organisms to each individual soldier. The his-
tograms show times after exposure for three differ-
ent patient conditions: (1) time of onset of fever, (2)
time for sufficient signs and symptoms to cause the
individual to seek medical care under routine opera-
tions (though he would be capable of continued duty
if so required), and (3) time for sufficient progression
of illness for the individual to become a litter patient
(or, stated differently, to become an operational ca-
sualty unable to perform in a combat or other emer-
gency situation). For the illustration in Fig. 10, the
second condition (seek medical care) is assumed to
occur when fever reaches 101.4 °F and the third con-
dition (litter patient) is assumed to occur when fever
reaches 104.2 °F. These values are based on perfor-
mance degradation of 25% and 75%, respectively, es-
timated (Anno et al., 1998) for tasks involving short-
term endurance and may vary from one scenario to
another.

Panels (a)–(c) in Fig. 10 correspond to a uniform
inhaled dose equal to the median effective dose for F.
tularensis. The Monte Carlo simulation of the com-
pany results in 41 of 90 individuals experiencing an
onset of fever. Of these 41, 30 seek medical care,
and 9 become litter patients during the early phase
of illness in the absence of treatment. The set of his-
tograms shown in panels (d)–(f) of Fig. 10 correspond
to a uniform inhaled dose of 10,000 organisms. At

this higher dose, all 90 individuals experience the on-
set of fever with 86 seeking medical care, and 56 be-
coming litter patients in the absence of treatment.
The distributions of onset time and time to seek med-
ical care occur about two days earlier than for the
lower dose in the left-hand panels. The variability of
these two times from person to person for the higher
dose is also reduced, decreasing from a spread of
about four days at the lower dose to about two days
for the higher. It is worth noting that these estimates
at the higher dose are not extrapolations. The major-
ity of the human volunteers on which the simulations
are based had even higher doses (see Table I).

4. DISCUSSION

The statistical characterization of the complete
data set from 118 volunteers (112 febrile with mea-
sured IP, fever rise time, and near-maximum fever)
fills gaps in knowledge about early-phase human tu-
laremia unappreciated in previously published stud-
ies from portions of these data (Egan, Hall, & Leach,
2011; Jones, Nicas, Hubbard, Sylvester, & Reingold,
2005; Wood, Egan, & Hall, 2014). The statistical
characterization of three parameters defining human
fever profile are useful for comparisons to outputs of
theoretical models of tularemia mechanisms, partic-
ularly IPs in animal models (Gillard, Laws, Lythe,
& Molina-Parı́s, 2014; Huang & Haas, 2011; Wood
et al., 2014) and from human epidemiologic investi-
gation (Egan et al., 2011). All of these studies consid-
ered F. tularensis strain Schu S4. Although the study
of Jones et al. (2005) did not consider temporal pat-
terns for tularemia, this study is mentioned herein for
completeness.

Egan et al. (2011) considered IP distribu-
tions based on both dose-dependent and dose-
independent data (their fig. 2). Their dose-dependent
IP distribution is generally consistent with the cur-
rent study, as might be expected since the human
data used by both groups overlap. However, a two-
parameter probit dose–response model was selected
in the current study over the simpler one-parameter
exponential model of Egan et al. (2011) because
this two-parameter model provides good fits to both
naı̈ve (Fig. 5) and vaccinated (Fig. 11) volunteers.
The ED50 for the exponential model is determined
entirely by the probability p1 that a single inhaled or-
ganism will cause fever. As illustrated in Fig. 11, the
exponential model will not accommodate the vari-
ability in immune response of the vaccinated human
volunteers (Anno et al., 1998) as does the adjustable
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Fig. 10. Monte Carlo simulation of patient streams for two exposure levels for a company-sized unit (90 individuals): 10 organisms, mean
inhaled dose (a), (b), and (c); and 10,000 organisms, mean inhaled dose (d), (e), and (f).
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Fig. 11. The lognormal model accommodates population variabil-
ity by fitting the slope of dose–response data for vaccinated indi-
viduals (Anno et al., 1998) that cannot be accommodated by the
exponential model.

slope of the two-parameter lognormal model. For il-
lustration, three parallel curves for the exponential
model are plotted in Fig. 11. The central, dashed
curve is drawn for a value of p1 yielding the same
ED50 as the best-fit lognormal curve (solid curve).
With no other parameter to adjust, the exponential
model predicts the same value of the slope at the
ED50 for any value of the ED50, as illustrated by the
two parallel dotted curves in Fig. 11. These parallel
curves correspond to ED50 values a factor of 10 lower
and higher for illustration. Because of the discrep-
ancy in predicted slope, attempted maximum likeli-
hood fits of the exponential model to the data for
the vaccinated individuals would not converge. Other
two-parameter models, including the beta-Poisson
model (Haas, 2015), could be considered in addition
to the lognormal model for disease incidence with
and without immunity.

Two dose–response analyses in the literature
considered only data from animal models. Huang
and Haas (2011) described fitting an exponential
dose–response model and incorporating time to
death based on data from a Rhesus monkey study
that administered aerosols of F. tularensis of vari-
ous organism number mean diameters from 2.1 to
24 μm. Note that the beta Poisson model did not pro-
vide a statistically significant improvement in fit over
the exponential model. Gillard et al. (2014) described
theoretical mechanisms for tularemia progression in
BALB/c mice administered 100 CFU by aerosol or
nasopharyngeal routes for the first 48 hours of patho-
genesis. Knowledge of the nature and magnitude of

mechanisms driving pathogenesis in humans, nonhu-
man primates, and murine species would be needed
for interspecies extrapolation of such modeling re-
sults in human health risk assessments.

The major strengths of this study for informing
military decisionmakers about the operational risks
of pneumonic tularemia are that: (1) the data set is
based on human subjects, specifically, 118 naı̈ve (un-
vaccinated) volunteers; (2) human fever endpoints
are available in the early phase of illness (prior to
antibiotic administration) for the 112 volunteers who
became ill; and (3) the mathematical model provides
a time- and dose-dependent statistical characteriza-
tion of multiple responses (i.e., IP, high-fever degree,
and rise time to high fever). The low-dose data deter-
mine the dose–response curve for incidence of febrile
illness for this highly infectious agent, and the data
set for the 112 febrile volunteers provides a statistical
description of the progression of illness as functions
of dose and time.

This detailed description of health status
over time for exposed troops is important in an
operational context to understand the risks over
time to mission effectiveness posed by intentional
exposures to F. tularensis in a biological attack. For
example, although the pathogen causes illness at low
doses (ED50(fever) = 9.8 inhaled organisms), these
low doses are associated with IPs and times to high
fever of nearly a week, potentially giving time to
complete an operation and then provide prophylactic
treatment to prevent clinical illness. Even after high
inhaled doses, illness is unlikely for two or more days
(Fig. 6), and antibiotic treatment typically clears
fever within one or two days without recurrence or
chronic effects. From a medical planning viewpoint
for a given attack on a military unit or a population,
the mathematical model predicts the time distribu-
tion of the number of individuals seeking medical
care, thereby providing an estimate of the patient
stream to be handled by medical treatment facilities.

Due to well-documented differences in strain in-
fectivity and virulence (Eigelsbach & Hornick, 1973;
Schricker, Eigelsbach, Mitten, & Hall, 1972; World
Health Organization, 2007), exposures to endemic
strains of F. tularensis may or may not result in clin-
ical disease patterns observed in Operation White-
coat volunteers exposed to the highly infectious
strain Schu S4. It is possible, however, to modify the
statistical parameters of the model to describe other
strains when appropriate data are available. Finally,
the model described herein may be adapted to other
biological agents causing early-phase febrile illness.
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5. CONCLUSIONS

The data set for inhalation-induced tularemia
generated in Operation Whitecoat confirms that
F. tularensis strain Schu S4 is highly infectious
(ED50(fever) of about 10 organisms inhaled) and
characterizes early-phase febrile illness parameters
that are both dose- and time-dependent (IP, near-
maximum temperature, and rise time). Based on the
statistical characterization of early-phase fever in the
human volunteers, the model provides reliable in-
sight into the health and operational readiness of ex-
posed troops and other personnel for as long as one
week after exposure. For longer times, the model is
less certain and requires additional information for
modeling later-phase illness.
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Syrjälä, H., Kujala, P., Myllylä, V., & Salminen, A. (1985). Air-
borne transmission of tularemia in farmers. Scandinavian Jour-
nal of Infectious Diseases, 17(4), 371–375.

USAMRIID. (2009). Update on USAMRIID scientist with
tularemia. Retrieved from: https://www.usamriid.army.mil/
press_releases/Tularemia%20News%20Rel%202.pdf.

USAMRIID. (2010). Tularemia in a laboratory worker at
USAMRIID: Executive summary—April. Retrieved from:
https://www.fredericknewspost.com/media/pdfs/tularemia-
executive-summary.pdf.

Verhulst, P. -F. (1838). Notice sur la loi que la population suit dans
son accroissement. Correspondance Mathématique et Physique
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