
Risk Analysis DOI: 10.1111/risa.12688

Modeling Rabbit Responses to Single and Multiple Aerosol
Exposures of Bacillus anthracis Spores

Margaret E. Coleman, Harry M. Marks, Timothy A. Bartrand, Darrell W. Donahue,
Stephanie A. Hines, Jason E. Comer, and Sarah C. Taft∗

Survival models are developed to predict response and time-to-response for mortality in rab-
bits following exposures to single or multiple aerosol doses of Bacillus anthracis spores. Haz-
ard function models were developed for a multiple-dose data set to predict the probability of
death through specifying functions of dose response and the time between exposure and the
time-to-death (TTD). Among the models developed, the best-fitting survival model (baseline
model) is an exponential dose–response model with a Weibull TTD distribution. Alternative
models assessed use different underlying dose–response functions and use the assumption
that, in a multiple-dose scenario, earlier doses affect the hazard functions of each subsequent
dose. In addition, published mechanistic models are analyzed and compared with models
developed in this article. None of the alternative models that were assessed provided a sta-
tistically significant improvement in fit over the baseline model. The general approach uti-
lizes simple empirical data analysis to develop parsimonious models with limited reliance on
mechanistic assumptions. The baseline model predicts TTDs consistent with reported results
from three independent high-dose rabbit data sets. More accurate survival models depend
upon future development of dose–response data sets specifically designed to assess poten-
tial multiple-dose effects on response and time-to-response. The process used in this article
to develop the best-fitting survival model for exposure of rabbits to multiple aerosol doses
of B. anthracis spores should have broad applicability to other host–pathogen systems and
dosing schedules because the empirical modeling approach is based upon pathogen-specific
empirically-derived parameters.
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1. INTRODUCTION

Available microbial dose–response models as-
sess the likelihood of illness resulting from a sin-
gle exposure and rely on experimental data from
single-exposure experiments or epidemiological data
from outbreaks. However, many microbial exposures
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are recurring. Microbial dose–response analyses(1–10)

have been conducted for single- and multiple-dose
data sets for inhalation anthrax, but a formal method-
ology potentially applicable to a wide variety of
pathogens and multiple-dose exposure scenarios has
yet to be introduced. Current challenges in the devel-
opment of a multiple-dose methodology include un-
certainty in the selection of appropriate techniques to
incorporate dosing schedule, conflicting data on the
assumption of independent and equal hazard posed
by individual pathogens (i.e., independent action hy-
pothesis) for single- and multiple-dose exposures,
and scarcity of multiple-dose data sets suitable for
microbial dose–response analysis.
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One approach to assess multiple-dose exposure
has been to calculate an average dose and apply it
over the identified exposure duration. Following the
process first applied in chemical risk assessment, the
approach requires a determination of the appropri-
ate increment of time over which the dose should
be averaged (e.g., dose/day). However, problems
with this approach include the potential for impact
of prior doses on the hazard posed by successive
doses and uncertainty in the selection of appro-
priate techniques to incorporate dosing schedule
for discontinuous doses. A second approach for
the development of dose–response relationships
for multiple-dose exposures has been to introduce
mechanistic assumptions to partially describe physi-
ological processes hypothesized to occur, in this case
over the repeated exposures. Haas(11) used the term
quasi-mechanistic to describe those mechanistic
models that provide an incomplete representation of
the overall physiological processes associated with
disease. For example, researchers have developed
dynamic models predicting the accumulated dose
relative to clearance mechanisms to remove the
hazard posed by inhaled spores(3) or have used a
competing risk model to assume rates associated
with individual elements that cause or prevent the
progression of infection and subsequent disease.(2,6–8)

However, there are critical gaps in knowledge of
the basic pathogenesis events of infections even for
host–pathogen interactions. For example, there are
considerable uncertainties in the basic elements of
infection initiation(12) and limited quantitative data
on the kinetics of infection for inhalation anthrax.
Accordingly, significant challenges for mechanistic
dose–response modeling of multiple-dose data are:
(1) uncertainty in the mechanisms that are being
modeled and (2) the limited quantity of robust data
to support mechanistic model development.

In addition to the prediction of response for
microbial pathogens, there also is interest in esti-
mating the time-to-response (e.g., incubation period
[IP], time-to-death [TTD]). Time-to-event charac-
teristics are likely dependent on complex interac-
tions of the disease triangle (host, pathogen, and
environment),(13–15) including pathogen dose and
dosing schedule. For Bacillus anthracis, some aspects
representing this biological complexity have been
modeled using mechanistic approaches.(2,3,5–8,10,11)

Given the complexity in the kinetic or time-based
elements of pathogenesis, the modeling of time-to-
response using mechanistic approaches is impeded
by uncertainty in the pathogenesis events and the

lack of data on the kinetics of the processes leading
to infection, disease, and death of the host.

The advantage of an empirical approach over
mechanistic approaches for developing dose–
response models is its wide applicability to other
host–pathogen systems and, given sufficient data, its
lack of dependence on mechanistic assumptions. This
study uses an empirical approach within a survival
analysis framework to derive response and time-to-
response endpoints. To allow for comparison with
mechanistic approaches, existing published models
are considered. Single- and multiple-dose data sets
developed for B. anthracis inhalation exposure in
the rabbit(4,16) are used to estimate parameters for
evaluated models.

1.1. Multiple-Dose Phenomena

Exposure to multiple low doses of pathogens
could result in different host and pathogen responses
than those from a single high dose. Response differ-
ences are hypothesized to result from an effect of
the host’s prior exposure on the hazard functions of
successive doses, with the potential for prior doses
to affect the host–pathogen system responses to the
continuing addition of pathogens at internal targets
in the host. Dose-dependent responses are exhibited
when there are host or pathogen response differences
based on the administered dose; these responses
include differential gene expression in pathogens
via quorum sensing,(17–22) varying host immune re-
sponses for high versus low doses of pathogen,(23–25)

and differing disease endpoints or times-to-response
in the host.(26–28) However, available dose-dependent
responses are derived from comparisons between
single- and high-dose exposures and there are lim-
ited data to conduct evaluations of dose dependency
in responses from multiple-dose exposure studies.

1.2. Studies of Multiple-Dose Pathogen Exposures

Statistically significant differences in host re-
sponse (e.g., probability of infection, IP) for three
experimental dosing schedules were reported in the
hamster for the prion disease scrapie.(29) As dis-
cussed above, such a finding is expected. A literature
search did not discover other published studies with
designs developed to measure the impact of multiple-
dose schedules on responses.

Data from single- and multiple-dose experimen-
tal and epidemiologic studies to assess time and
dose dependency of inhalation anthrax in the rabbit,
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nonhuman primate (NHP), and the human are sum-
marized in Tables SI and SII. Significant knowl-
edge gaps for human inhalation anthrax exist, in-
cluding uncertainty in dose levels causing illness and
incomplete details of exposure (numbers exposed;
day, time, and duration of exposure) from the epi-
demiologic evidence. For example, data from the
Sverdlovsk accidental release from a bioweapons
factory(30–33) are lacking environmental exposure lev-
els, vaccination status of those presumed to be ex-
posed, and use of medical preventative treatments
(e.g., vaccines, antibiotics).

Data for estimating IPs and TTDs for inhalation
anthrax pathosystems are summarized for the rab-
bit and NHP as supplemental data. Low-dose data
are lacking for the rabbit and sparse for the NHP
(Table SI). It is unknown how the reliance on high-
dose data to derive IP and TTD values will affect
analysis of time and dose dependency, although both
time-to-response and variability are expected to de-
crease with increasing dose. The respective estimates
of IPs and TTDs for B. anthracis (Table SII) were
four to six days and five to eight days for human
inhalation from opened or handled contaminated
mail.(34,35) Two of the most recent well-controlled
rabbit studies caused 100% mortality at presumably
high comparable doses.(36,37) The mean TTDs were
47 and 73 hours, including death of one rabbit within
29 hours of exposure. Slower progression to fatal
inhalation anthrax was observed in multiple NHP
species; mean TTDs were reported at 3–14 days (38–46)

including NHP deaths at 18, 20, 25, and 50 days in in-
dependent studies. Interspecies effects noted above
merit additional research.

Despite chronic exposure of mill workers to
aerosols containing B. anthracis spores,(47,48) human
inhalation anthrax cases were rare. From 1948 until
initiation of the vaccination program from 1955
to 1957, 0.6–1.4% of workers in four mills in the
northeastern United States. reported anthrax,(47)

predominantly cutaneous anthrax cases. Evidence
was reported for clusters of inhalation anthrax
cases consistent with peaks of high dust exposure
(presumably with B. anthracis) for the human.(49,50)

In addition, clusters of cases in NHPs were thought
to be associated with prior peak exposures when
exposed to mill aerosols during production.(38) The
aerosol sampling studies conducted in the three U.S.
mills suggest there was chronic exposure of mill
workers to aerosolized particles containing microbial
populations,(49,50) with intermittent exposure to B.

anthracis spores. The B. anthracis strain isolated
from a mill worker with inhalation anthrax was
of similar virulence as the strains characterized in
U.S. Army bioweapons programs.(49,50) These data
support the conjecture that human anthrax cases
were likely not associated with average daily or
cumulative exposures over long periods, but rather
with short-term exposures of relatively high levels.

Reports on two additional recent rabbit data
sets(4,16) described subsequently in this article extend
the body of evidence in the rabbit for both single-
and multiple-dose studies. The purpose of these
rabbit experimental studies was to evaluate physi-
ological responses following exposures to single or
multiple low doses of B. anthracis spores, and not
specifically to estimate time- and dose-dependent
parameters. These data, nevertheless, are used to
develop time-dependent dose–response models
presented in this article.

1.3. Recently Published Models Using
Multiple Doses

Below are brief summaries and critiques of pub-
lished mechanistic models for inhalation anthrax
based on the multiple-dose study using naturally
contaminated aerosols from mill environments(38)

and/or human epidemiologic information detailed in
the supplementary data. Mayer et al.(3) used a sur-
vival analysis framework to develop a dose–response
model predicting mortality and TTD estimates for
the cynomolgus monkeys in the Brachman et al. data
set.(38) The Mayer model(3) included parameters for
clearance from NHP lungs explicitly and the dynam-
ics of immune response via a deterministic empirical
function. The Mayer model(3) does not include spore
germination and vegetative bacteria growth param-
eters, unlike other theoretical models.(5) Rather, the
net in vivo pathogen count from a given dose is as-
sumed to decline due to clearance from the lungs.
The Mayer model(3) assumed that the likelihood
of infection during a period is proportional to the
number of pathogens in vivo during the period.
Thus, the model has three mechanistic model pa-
rameters plus two additional parameters reflecting
an uncertain and variable lag time between symp-
toms and death. Mayer et al.(3) estimated the average
daily dose values presented graphically in Fig. 3 of
Brachman et al.(38) after fixing the remaining param-
eter values in the model. Given the assumed inter-
mittent and unquantified peak exposures in the data
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set, the use of the average daily exposure estimates
rather than actual exposures might contribute to bi-
ased parameter estimates. When considering the lag
time parameter, Mayer et al.(3) integrated the likeli-
hood function for the other parameters in the model
over all assumed possible lag time values to derive
the parameter estimates.

Other published models(2,5–8,10) were not devel-
oped through assumptions of hazard functions. In-
stead, they specified probability functions of death
and durations for infection, symptoms, and death.
The Wilkening model(10) extended the competing
risk model of Brookmeyer et al.(5) and developed a
seven-parameter dose–response model. The Wilken-
ing model(10) assumed log normal distributions for
lag times between spore germination, symptoms, and
death. In the Wilkening(10) paper, four of the param-
eter values were derived using maximum likelihood
estimation (MLE); literature-based values were as-
sumed for the other three parameters, which in-
cluded a parameter that represented the threshold
number of cells needed for development of clinical
symptoms. Models developed by Gutting et al.(6–8)

are based on these same mechanistic assumptions.
Based on the current analysis of these models de-
scribed below, model outputs are extremely sensitive
to the estimate of the uncertain threshold number of
cells necessary to cause symptoms.

Toth et al.(2) presented a model based on both
human epidemiologic studies and NHP studies, in-
cluding the multiple-dose mill aerosol study.(38) The
model is similar to that of Wilkening.(10) However,
the Toth et al.(2) model has five parameters: the prob-
ability that an individual spore germinates prior to
clearance, the rate of clearance from the lungs, a
lag parameter representing the time between ger-
mination and symptoms, and two parameters for a
gamma distribution of time between symptoms and
death. To model the impact of multiple doses over
time on infection, the Toth et al.(2) model assumes
response based on the “accumulation” of pathogen
cells over time. Toth et al.(2) estimated the spore
germination probability and lag parameter from the
Brachman cynomolgus monkey data for experimen-
tal runs 3–5(38) using daily doses visually estimated
from graphs.(38) The clearance probability was esti-
mated from rhesus monkey data, and the parameters
for the gamma distribution were derived from human
data reported by Holty et al.(51) for measurements of
times between symptoms and death. Information to
validate this set of parameter values is lacking in the
rabbit animal model.

Mechanistic models for inhalation
anthrax(2,3,5–8,10) assume a sequence of steps from
progression of infection, symptomatic illness, and
host death with limited in vivo data available to
support the specified models. For each step, esti-
mates of parameters were made from available data,
although there are varying levels of rigor associ-
ated with literature-derived parameter values. The
biological meaning and appropriate interpretation
of the model’s parameter values depend on the
disease pathosystem being sufficiently and correctly
defined. If the defined structures are correct, then the
estimated parameters are biologically meaningful,
and the models are typically assumed to have greater
generalizability to settings other than those of the
original data set. If the defined system is incorrect
or any of the mathematical functions used for de-
scribing the pathosystem are defined incorrectly,
the model parameter estimates would not represent
the biology of the host–pathogen interactions and
the resulting model would not be generalizable.

1.4. Survival Analysis Approach

A simple empirical approach is described herein
based on formal application of survival analysis and
hazard functions to explore time and dose dependen-
cies for mortality in rabbits dosed once or multiple
times with low doses of B. anthracis spores. The ob-
jectives of this analysis are to assess a baseline sur-
vival model and more complex models based on the
rabbit data and to compare the parsimonious em-
pirical models to published “mechanistic” models of
inhalation anthrax.

2. METHODS

The development of the dose- and time-
dependent survival model presented in this article
relies on an empirical approach of data analysis
for developing a model that predicts mortality and
time-to-response rather than using mechanistic
assumptions. Initially, “baseline” models are derived
using simple assumptions of exponential dose re-
sponse, independent hazards from multiple dosages,
and hazard functions proportional to dose levels.
Alternative models are then developed using more
complex assumptions, as explained in Section 2.2.
Measures of fit for these models are compared one
to the other in order to determine the best fitting
dose–time dependent survival model, termed the
dose–time dependent model or baseline model.
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2.1. Derivation of the Baseline Survival Model

Baseline models are derived using survival
analysis.(52) For a baseline model, the hazard func-
tion describing the likelihood that an exposed indi-
vidual dies at time t is the conditional-specific rate of
animal death at t given that the animal has survived
up to t . If multiple events (exposed doses, indexed by
k with k = 0 as the initial dose at time zero) act on
the host at times tk, where each event creates its own
hazard function for the host, hk, the total hazard func-
tion for the host at time t is the sum of the individ-
ual hazard functions at t . The total hazard function,
H(t, {tk, dk}), to the host at t , given that the animal
is exposed to K doses, dk, at times, tk, is:

H
(
t, {tk, dk}K−1

k=0

) =
K−1∑
k=0

hk (t − tk, dk) , (1)

where t0 = 0 is assumed. One of the most common
assumptions made in survival analysis is that hazard
functions are proportional to independent variables
that affect the system. Thus, initially, the assumption
is that hk is equivalent to rdkg′(t − tk), where r is a
constant describing the probability of the endpoint;
dk is the dose for the kth event; g(t) is a cumula-
tive distribution function for TTD; and g′(t − tk) is
the derivative of the function g(t − tk). For an animal
exposed to K doses at times t0, t1, . . . , tK-1, the total
hazard at a given time, t, is:

H (t, {di , ti }) = rd0g′ (t)

+ rd1g′ (t − t1) + rd2g′ (t − t2)

+ . . . + rdK−1g′ (t − tK−1) . (2)

Once the hazard function, H(t, {tk, dk}), is de-
termined, a simple mathematical transformation is
used to determine the survival function, S(t); the
probability that the animal survives at t,

S (t) = exp
[−∫t

0 H (u) du
]

(3)

and the probability of death at time, t , is F(t) =
1 − S(t). It is often advantageous to consider the log-
arithm of the survival function S(t) versus time:

ln [S (t)] = −∫t
0 H (u) du. (4)

The density function, f, is the joint probabil-
ity distribution of death at time t given survival to
time t. The density function is estimated from f (t) =
S(t)H(t). As described more fully in Section 2.4, the
density function is used to generate the likelihood
function to derive MLE values for parameters.

For baseline models from Equations (2) and (3),
the survival function is defined as follows:

S (t, d) = exp (−rdg(t)) . (5)

In this study, g is referred to as a TTD distribu-
tion, the distribution of times between exposure and
death. Equation (5) is also referred to as the expo-
nential dose–response model with TTD distribution
g. A total of eight cumulative distribution functions
(Table I), including the exponential dose–response
model with TTD distribution g, were evaluated in
this study using the rabbit study data(4,16) (Tables II
and III).

The assumption that g is a cumulative distribu-
tion function is important because this makes Equa-
tion (5) consistent with expected microbial dose–
response phenomena: the level of response (% mor-
tality) decreases with decreasing dose, and, in the
limit t → ∞, not all animals are assumed to die.
Equation (5) has been used in prior published stud-
ies of time-to-response for single doses of pathogenic
organisms(53–55) and is functionally the same as a
model developed by Brookmeyer et al.(5) The deriva-
tion described in this article is based on survival anal-
ysis, while prior studies (2,3,6–8) are based on mecha-
nistic assumptions.

2.2. Extensions of the Baseline Model

One type of alternative model that accounts for
dependencies between effects of doses over time is
obtained by multiplying hazards for successive doses
by factors β({di }, n), where {di } is the collection of
previous doses and n is the number of previous doses.
Time is not included as a variable of the function β

because all animals in the data set used were dosed
with the same schedule and the majority of the doses
were administered daily except during weekends.
These alternative models assume that:

hk = βk−1hk−1, (6)

for k = 1, . . . ., K, where βk−1 is a function of the
dose for the previous exposure, dk−1 for k > 0. It
is assumed that βk−1 are between 0 and 1, reflect-
ing the assumption that rabbit immunological sys-
tems respond to previous doses so that the hazards
for subsequent doses are less than those for earlier
doses. Several functional forms for the factor β are
evaluated, including an exponential model, a logistic
function, and a Gompertz model.

A second type of alternative to the base-
line model is derived by changing the initial
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Table I. Survival Model Time-to-Death (TTD) Distribution and Cumulative Dose–Response Relations

Modela TTD Distribution, g Dose–Response Relation, F

Exponential 1 − e−(at) F(t) = 1 − e−rd (1−e−at )

Lagged exponentialb 1 − e−a(t− tlag) F(t) =
⎧⎨
⎩

0 0 ≤ t ≤ tlag

1 − e
−rd

(
1−e

−a (t−tlag)
)

t > tlag

Inverse exponential e−(a/t) F(t) = 1 − e−rd e−(a/t)

Lagged inverse exponentialb e−a/(t−tlag) F(t) =
⎧⎨
⎩

0 0 ≤ t ≤ tlag

1 − e−rde
−a/(t−tlag)

t > tlag

Weibull 1 − e−(t/a)b
F(t) = 1 − e

−rd
[
1−e−(t/a)b ]

Lagged Weibullb 1 − e−((t−tlag)/a)b
F(t) =

⎧⎨
⎩

0 0 ≤ t ≤ tlag

1 − e−rde(rd)e
−((t−tlag)/a)b

t > tlag

Inverse Weibull e−(a/t)b
F(t) = 1 − e−rd e−(a/t)b

Lagged inverse Weibullb e−[a/(t−tlag)]b
F(t) =

⎧⎨
⎩

0 0 ≤ t ≤ tlag

1 − e−rde
−[a/(t−tlag)]b

t > tlag

Mayerc F(T) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − e
− s

γ (2−α)

⎧⎨
⎩d2−α−

[{
d1−α−γ (1−α)T

}] 2−α
1−α

⎫⎬
⎭

T < te

1 − e
− s

γ (2−α) d2−α

T ≥ te

aDose–response model parameters are r (likelihood of an individual pathogen initiating an infectious focus and death), t (time), d (dose).
bIn lagged models the parameter tlag is an empirical parameter giving the lag time between inoculation and the initiation of death.
cIn all of the models except the Mayer model, the parameters a and b describe the time-to-death distribution. In these time-to-death
distributions, a is a scale parameter and in the Weibull and inverse Weibull time-to-death model, b is a shape parameter. In the Mayer
model, α is a shape parameter associated with pathogen accumulation. In the Mayer relation, te = d1−α/[γ (1 − α)].

Table II. Group-Specific Single Dose Experiment Doses and Mortality

Group ID Number Geometric Mean Dose Mortality; Time-to-Death by Study Day

A2 284 0/5; NA
A3 2,040 0/5; NA
A4 31,900 2/5; Day 4, 11; Mean = 7.5
A5 266,000 4/5; Day 3, 4, 6, 6; Mean = 4.8
A6 8,124,000 5/5; Day 2, 3, 4, 4, 5; Mean = 3.6

ID, identification; NA, not applicable.

dose–response function (exponential) used in Equa-
tion (5). For this evaluation, the beta-Poisson and
log-probit dose–response models are used. To in-
clude time-to-response in the beta-Poisson and log-
probit models, the dose was multiplied by the TTD
distribution as was performed for the beta-Poisson
model by Huang and Haas.(54)

2.3. Extensions Using Published Mechanistic
Models

Several recently published studies provide dose–
response models that were fit to the rabbit data(4,16)

and compared with the baseline and alternative mod-
els described above. First, a model described by
Wilkening,(10) and evaluated by Gutting et al. with



Survival Modeling for Single and Multiple Dosing 7

Table III. Group-Specific Multiple Dose Experiment Doses and Mortality

Group ID Number
Geometric Mean Dose per

Exposure
Geometric Mean of

Animal-Specific Sum

Mortality;
Time-to-Death by

Study Day

M2 271 4,300 0/7; NA
M3 1,181 17,800 1/7; Day 18
M4 11,060 138,900 4/7; Day 11, 13, 15, 21;

Mean = 15

ID, identification; NA, not applicable.

rabbit data,(8) is considered. This model was based
on a probability function proposed by Brookmeyer
et al.,(5) FG(t, d; θ, λ), in which anthrax illness was
modeled as the outcome of the competition be-
tween spore clearance and spore germination. In the
Brookmeyer “competing risk” dose–response model,
θ and λ described the rates of spore germination
and spore clearance, respectively. Wilkening(10) and
Gutting et al.(8) extended the “competing risk” model
by assuming that the incubation time between spore
germination and generation of a threshold in vivo
population was lognormally distributed and related
to the doubling time of B. anthracis. This assumption
introduced three additional model parameters, which
are described below.

The rabbit data(4,16) were also fit to the model
given in Mayer et al.(3) This model assumed a haz-
ard function for an endpoint of infection at time
t equal to the product of a parameter, s, and the
number of viable anthrax cells in the host at time
t, P(t). The function P(t) was derived assuming
dP(t)/dt = −γ [P(t)]α . For multiple doses, the
function P(t) was calculated sequentially, where the
contribution of the kth dose at time tk−1 is added
to determine P(tk−1). The Mayer(3) model has three
mechanistic descriptive parameters: s > 0, γ > 0,
and α ϵ [0, 1], reflecting the shape of the pathogen–
survival curve. Mayer et al.(3) introduced what the
authors called a “fixed population lag period,” de-
fined as the time between infection (“take-off”) and
death. Values of the lag parameter may depend on
many factors, including the dose levels, dose strain,
and host species.(3) Mayer et al.(3) assumed that this
parameter was distributed as a discrete uniform
distribution over 1–4 days for cynomolgus monkeys.
Rather than estimating a value, the authors inte-
grated it out of the likelihood. Thus, the Mayer(3)

model has five parameters: the three mechanistic
descriptive parameters and two additional parame-
ters defining the range of the lag period estimates.

The impact of values of the latter two parameters on
values of the three mechanistic parameters was not
explored in the Mayer et al.(3) paper.

The Gutting model(8) assumed that once spore
germination occurs within the host, there was
a time-to-symptom distribution. Therefore, the
probability of symptoms was computed directly (nu-
merically) by calculating the convolution (integral)
of the probability function of spore germination
(Equation (8) in Gutting model(8)) and the assumed
symptom endpoint distribution (Equation (12) in
Gutting model(8)). The latter was a function of three
parameters: the standard deviation of the natural
log-transformed IP (time), the doubling time for
B. anthracis vegetative cell growth, and a threshold
parameter representing the number of vegetative
bacteria present in the host before illness. The full
Gutting model has five parameters: the three param-
eters above plus two additional parameters related to
the spore germination and clearance rates. Gutting
et al.(8) estimated values of the doubling time using
two data sets, one from high-dose exposure as mea-
sured using culture-based measurements and the sec-
ond from low-dose exposure as measured using poly-
merase chain reaction (PCR) measurements. The ap-
plication of the Gutting model in this article assumes
that TTD coincides with the time-to-symptom obser-
vation, reflecting the short times observed between
initial disease expression and death in rabbits.(36)

2.4. Model Fitting

Model parameter values are estimated via MLE.
In deriving the likelihood function, TTD is treated
as a continuous variable because TTD is recorded
to the nearest minute for the single- and multiple-
dose experiments. For the jth animal succumbing at
time tj, for which tj is less than the experimental
observation time, te, the likelihood of mortality is
given by:

Lj = f (t j ) = S (t j ) H (t j ) , (7)
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where the dependencies on other variables and pa-
rameters besides time are not noted for simplicity.
When the animal does not die during the experiment,
the likelihood for the animal is:

Lj = S (te, j ) . (8)

The likelihood function for all animals is:

L =
J∏

j=1

Lj . (9)

The logarithm of this likelihood is maximized
with respect to all identified parameters using R
computer program routines.(56) In addition to using
graphical analyses for evaluating goodness of fit, sta-
tistical inferences were drawn about the goodness of
fit of individual models, the difference in fit of nested
models, and the difference in fit of nonnested mod-
els. The deviance of the fit (−2 times the log of the
likelihood function evaluated at the MLE values) is
used for comparison of nested models. The corrected
Akaike information criterion (cAIC) measure(57) is
used for comparison of nonnested models to select
the best-fitting model. The best-fitting model is asso-
ciated with the lowest deviance or the lowest cAIC
values. For all estimates reported, the MLE proce-
dure obtains convergence using different starting val-
ues and a nonsingular Hessian matrix, when setting
a relative tolerance of 1 × 10−8 as the convergence
criterion. Plotting the likelihood function and boot-
strapping are performed to examine stability of the
estimates. For the latter, individual animals are used
as the primary sampling unit. Further details of the
calculations can be obtained from the authors.

3. RESULTS

In this section, results are presented for a prelim-
inary analysis and survival analysis of baseline and
alternative time–dose dependent models.

3.1. Preliminary Analysis

The single-dose data set(16) consists of five
groups, A2–A6, each with five animals exposed to
single doses of B. anthracis aerosols. The multiple-
dose data set(4) consists of three groups, M2–M4,
each with seven animals that were exposed to B.
anthracis aerosols once a day, except for weekends,
for 15 days over a 19-day exposure period. Control
groups A1 and M1 are not included in the figure and

tables as there were no rabbit deaths in the control
groups that received irradiated spores.

Summaries of the mortality results are given in
Tables II and III. For Tables II and III, the group-
specific geometric means of the animal-specific doses
are listed. For Table III, group-specific geometric
means of the animal-specific daily doses and the ge-
ometric mean of the animal-specific sums of daily
doses are provided. TTD values given in the tables
are rounded to the nearest day, though for all sta-
tistical analyses, results to the nearest minute were
used.

The coefficients of variation (CV) for the TTD
for the groups A5, A6, and M4 are all about 30%; for
group A4, the two animals that died had TTDs of 4
and 11 days, and the CV is about 65%. More vari-
able TTD at low dose than at high dose has been ob-
served in other microbial dose–response studies.(58)

The data from group A4 have substantial influence
on the models that were fit to the data, contributing
to the uncertainty of the predicted TTDs for given
doses.

Death rates (i.e., proportion of animals succumb-
ing) were expected to be an increasing function of
daily doses and TTD to be a decreasing function of
daily doses. Based on the observed death rates and
the geometric means of daily doses given in Tables
II and III, both data sets exhibited a positive dose-
dependent relationship for lethality. For the mean
TTD in the multiple-dose data set, the number of
samples and deaths are too small to determine a rela-
tionship. For the single-dose data set, there is an ob-
served negative correlation between dose and TTD;
however, this is primarily due to the one animal that
died 11 days after exposure.

It is also plausible that animals exposed to
multiple doses as compared to a single dose of ap-
proximately the same daily dose amounts would die
earlier, assuming the animal dies. The comparison of
TTD results between groups A4 and M4 (respective
mean log10 daily doses of 4.5 and 4.0, approximately
the same order of magnitude) is inconsistent with
this expected relationship: the mean TTD for the
M4 group of animals that died is about twice that of
the corresponding mean for the A4 group. It might
be that such a large difference in mean TTD values
for the two groups would be due to the small differ-
ence in mean log10 daily dose. If true, TTD would
be sensitive to even small dose-level differences.
Otherwise, the observation of greater mean TTD for
multiple-dosing animals suggests the possibility that
multiple doses over time induce a protective effect



Survival Modeling for Single and Multiple Dosing 9

Table IV. Baseline Survival Models and Fit Statistics (Best-Fitting Model in Bold)

Time-to-Death Model Time-to-Death Function cAIC for MLE Fit to Pooled Data

Exponential 1 − e−at 146.05

Lagged exponential 1 − e−a(t−tlag) 148.29

Inverse exponential e−a/t 121.48

Lagged inverse exponential e−a/(t−tlag) 123.77

Weibull 1 − e−(t/a)b
118.16

Lagged Weibull 1 − e−[(t−tlag)/a]b
120.50

Inverse Weibull e−(a/t)b
123.60

Lagged inverse Weibull e−[a/(t−tlag)]b
126.01

Mayer et al. Likelihood of event � in vivo (cumulative)
dose assuming a lag of 1 day for response

134.09

cAIC, corrected Akaike information criterion measure; MLE, maximum likelihood estimation.

that enables survival for a longer period. However, it
is difficult to discern a relationship for higher mean
TTDs for the M4 group compared to that of the A4
group due to large variability and small sample size.
A t-test assuming equal group-specific variances of a
group effect of TTD has p-value = 0.126 (two-sided,
four degrees of freedom), suggesting a possible,
though not statistically significant, group effect for
dose on TTD. This example shows that more animals
are needed to determine these types of relationships
and efforts to better characterize variability in TTD
are necessary.

3.2. Survival Analysis for Baseline Models

Single-dose data, multiple-dose data, and pooled
data are fit to survival models using the TTD distri-
butions shown in Table IV. The models do not in-
clude interdose dependence (i.e., the parameter β

in Equation (6) is equal to 1) and are termed the
“baseline” survival models. On the basis of the cAIC,
the survival model using the Weibull TTD distribu-
tion provides the best fit to the single- and multiple-
dose data sets (not shown) and the pooled data set
(Table IV). Incorporation of a lag parameter did not
yield a significant improvement in fit over the non-
lagged versions of the TTD distributions.

For the Mayer(3) model, when the lag time is
treated as a single variable-value model parameter
rather than a fixed parameter, convergence is not
obtained using MLE. By fixing the lag time, conver-
gence is obtained using MLE for the other three pa-
rameters. The estimated values of these parameters,

however, are greatly impacted by the assumed value
of the lag time. For example, the value of the specific
rate of death for an individual pathogen(s) changed
by one log10 with a change of assumed lag time from
1 to 1.5 days. In the models with lag presented in
Table IV, a value of 1 day is used for the lag (based
on the shortest observed TTD of 1.7 days).

For the Gutting(8) model with five parameters,
convergence is not obtained for the single-dose data.
Thus, for this article, some of the parameters are
fixed and the other parameters are estimates using
MLE. The solutions are very sensitive to estimates
of the assumed value of the threshold bacteria count
at which responses occurred. For some assumed val-
ues of the threshold count, no estimates of other pa-
rameters could be obtained, and for other values, the
model predictions are not realistic (i.e., all animals
died at all doses or all animals survived all doses). In
addition, estimates for the rate of clearance of spores
from lungs were orders of magnitude greater than the
value proposed by Gutting et al.(8) These results for
the Gutting model indicate that the data sets are too
small to fit the model without some fixed parameter
value and that fitting a reduced version of the model
by assuming fixed values for a subset of the parame-
ters produces widely varying parameter estimates.

Parameter estimates for the survival models with
the Weibull TTD distribution are presented in Ta-
ble V. The results for the pooled data set incorporate
the assumption that no data set effect exists and that
the parameter values would be the same regardless of
whether the animal receives a single dose or multiple
doses. The estimated values of the parameters r and



10 Coleman et al.

Table V. Parameter Estimates for the Baseline Best-Fitting
Weibull Incubation Survival Model

Data Set r a b

Multiple 5.280×10−6 10.911 376.7
Single 5.949×10−6 8.815 4.119
Pooled 5.58×10−6 9.25 3.905

a (a scale parameter for the TTD distribution) ob-
tained when fitting the single and multiple dose data
sets separately do not vary widely among the fits to
the single- and multiple-dose data sets, whereas the
estimated values of the parameter b (a shape param-
eter for the TTD distribution) have a statistically sig-
nificant difference (p-value = 0.0002).

The best-fit Weibull baseline survival model pre-
dictions are shown in Fig. 1. Two curves are shown
for each dose group. The dotted line curve shows ob-
served mortality and the solid line curves show pre-
dicted mortality. Qualitatively, the best-fit baseline
model provides a good fit to both the single-dose and
multiple-dose data. The apparent large difference
for the predicted and observed results for group A4
is not statistically significant, and is due to the small
number of animals in the group. Although there is
a statistical difference between the values of b when
estimated separately for the two data sets the model
predictions are not sensitive to the values of b used.
Further, the differences in predicted TTDs using
the pooled value versus the data-set–specific values
(4.119 for single-dose data, 376.7 for multiple-dose
data, and 3.905 for pooled data) are not of practical
significance. Therefore, for this article, the baseline
model is assumed to have an exponential dose–
response function and a Weibull TTD distribution.

3.3. Survival Analysis of More Complex
Alternative Models

As described in Section 2, two types of alterna-
tive models are explored. In the first type, the haz-
ard function is scaled between successive doses as
shown in Equation (6). Three functions are used for
the scale parameter β: an exponential, a logistic, and
a Gompertz function. The MLE parameter estimates
and best-fit model deviances are reported in Table
IV. Because each of the models constitute a nested
set with the baseline Weibull model, the significance
of the additional parameter(s) is assessed based on
the differences in deviance for the baseline model

and the models with scaled hazard functions. None
of the models with hazard function scaling produces
a statistically significant improvement in fit over the
baseline model.

The second type of alternative model assumes
a more complex doseresponse than the exponen-
tial dose–response function. Alternative functional
forms common in microbial dose–response modeling
include log-probit and approximate beta-Poisson. In
these alternatives, the dose is scaled by the TTD dis-
tribution, as described in Section 2, and the resulting
models are fit to the pooled data set using MLE, as-
suming parameter values do not depend on data set.
The model fits were compared to the baseline model
via their cAICs because the models are not nested.
The resulting cAIC values are presented in Table
VII. Lagged models are not included in this analy-
sis because the lag term is not significant in any of
the baseline model analyses. The exponential dose–
response model with a Weibull TTD yields the best
fit (lowest cAIC) among all alternative combinations
of framework and TTD models, indicating that the
more complex alternative dose–response models do
not yield a statistically significant improvement in fit
over the simpler exponential dose–response model,
although the differences of the cAIC values are not
great.

4. DISCUSSION

Models for predicting both response and time-
to-response when hosts are exposed to multiple
pathogen doses are developed in this article using
a survival analysis framework. The functions and
parameter values of the baseline model are derived
using empirical data analysis on data sets of single-
and multiple-dose data(4,16) consisting of mortality
and TTD for B. anthracis exposure in the rabbit.
The best-fitting model among all of the models
evaluated was derived using a one-parameter ex-
ponential dose–response function for death and a
two-parameter Weibull distribution for the TTD
distribution. A visual inspection of the observed
and predicted TTD relative to mortality probability
by dose group shows that this best-fitting baseline
model provided a generally good fit to the pooled
data set for outputs (Fig. 1). More complex survival
models accounting for dose–effect dependencies
over time and different dose–response functions
did not yield statistically significant improvements
in fits for the rabbit data TTD observations over
the best-fitting three-parameter survival (baseline)
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Table VI. Summary of Fits for Models with Hazard Function Scaling Between Doses

Scale Parameter Functional Parameter
Model Form Estimates Deviance � Deviance p-Value

Baseline Weibull model r = 5.58×10−6 111.593
a = 9.25
b = 3.905

Exponential dependence on prior dose β(di ; w) = e−wdi−1 r = 7.29×10−6 110.676 0.917 0.338
a = 9.76
b = 3.98
w = 7.50×10−6

Logistic dependence on prior dose β(di ; i, v) = 1
1+euln di−1+v r = 6.24×10−6 111.454 0.139 0.933

a = 9.48
b = 3.93
u = 0.00938

v = −3.55
Gompertz dependence on prior dose β(di ; η, χ) = 1 − e−eηlndi−1+x

r = 6.45×10−6 111.433 0.163 0.922
a = 9.53
b = 3.94
w = 0.0361

x = −3.575

model. The baseline model predictions for TTD
are consistent with the observed 2- to 3-day TTD
in other published rabbit data sets(36,37,59) at high
doses.

Further refinement of the empirically-based
methodology using the rabbit study data would
require the ability to find statistically significant
multiple-dose effects. However, the small number of
animals and the experimental designs of the rabbit
studies limit the statistical power of the data set. In
particular, the timing of doses was essentially the
same for all animals receiving multiple doses, and
there were small numbers of animals at doses that
produced fractional death proportions (not 0% or
100%). Consequently, the lack of improved fit of
more complex models compared with the baseline
model could be a limitation of the data, and not
reflective of the “true” underlying phenomena for
this pathosystem. The analysis of the rabbit single-
and multiple-dose data sets also highlighted the need
for appropriate statistical power in the measurement
of both response and time-to-response. There has
been little study in the variability and contributors to
variability in TTD for inhalation anthrax, although
knowledge of this variability could inform important
inputs in survival models using time-to-response
parameters.

The empirical approach used in this article for
developing models uses minimal mechanistic as-
sumptions, whereas published mechanistic modeling

approaches(2,3,6–8) partially define a series of disease
progression steps using multiple parameters. The
specification of fully mechanistic models can require
significant amounts of data to estimate parameter
values and validate the models. Because these data
do not exist for the inhalation anthrax pathosystem,
researchers used simplifications to specify the models
and/or parameter values that may not appropriately
describe the system. Without validation of the mech-
anistic system assumptions, the estimated parameters
have uncertain biological meaning; thus, even though
the models may provide satisfactory fit for the avail-
able animal model data sets, the predictions from
them to regions outside the data would not be jus-
tified. In addition, the mechanistic models examined
in this article may be overparameterized relative to
available data, possibly leading to a large degree of
uncertainty in model predictions. The empirical ap-
proach used in this article avoided that problem by
identifying parsimonious models (i.e., models using
the fewest necessary parameters) that still produce
the best statistical fit for the rabbit studies(4,16) data
sets.

The empirical modeling approach demonstrated
for the rabbit inhalation anthrax pathosystem has
merit for assessment of multiple-dose effects in other
host–pathogen scenarios, particularly where the use
of alternative modeling techniques is limited. The
modeling approach is flexible and can use pathogen-
specific empirically-derived parameters for elements
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Fig. 1. Best-fit baseline survival model for pooled
single- and multiple-dose data set.

Table VII. Model Fit Statistics for Models with Alternative Frameworks

Underlying Dose–Response Model and cAIC

Incubation Model Exponential Log-Probit Approximate Beta-Poisson

P(d) = 1 − e−rd P(d) = ϕ
(

1
q2

ln d
q1

)
P(d) = 1 −

[
1 +

(
d

N50

)
(21/α − 1)

]−α

Exponential 146.04 141.74 143.54
Inverse exponential 121.48 119.68 120.82
Weibull 118.16 119.04 118.97
Inverse Weibull 123.60 120.35 121.90

cAIC, corrected Akaike information criterion measure.

that are typically default judgments that are uni-
versally applied across pathogens (e.g., interdose
dependence or independence). This broadens the
applicability of the methodology across pathogens,
hosts, and exposure scenarios with pathogen-specific
data on some host–pathogen characteristics (e.g.,
multiple-dose data with evidence for dependent ac-
tion in prions(29)).

Model-directed research initiatives have proven
essential to develop and test mechanistic models for
other pathosystems,(60–63) with resulting data from
these efforts aiding in both model specification and
parameter identification. These approaches can be of
considerable value for future development of dose–
response data sets specifically designed to assess
potential multiple-dose effects on response and
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time-to-response. Mayer et al.(3) identified consider-
ations in the design of studies to measure multiple-
dose effects for an identified host–pathogen system.
The range of doses providing fractional response
(e.g., some death) and time-to-response is an im-
portant element in study design because of the un-
known cumulative effect of multiple doses.(3) The
range of doses that causes fractional death propor-
tions (i.e., between 0% and 100%) may be differ-
ent for multiple doses and depend on the time pat-
tern of the exposures as well as the time scale of
response. Study design should incorporate different
time patterns and levels of doses (e.g., fixed total
doses while varying dose, number, and timing).(3)

Mayer et al.(3) identified that large sample sizes
may be necessary to obtain reliable estimates of pa-
rameters. Survival models could be developed fol-
lowing the approach presented in this article for
newly generated data sets on time and dose pat-
terns for any pathosystem of interest, as also demon-
strated in another pathosystem by Gravenor et al.(29)

for three experimental dosing schedules using
multiple doses.

5. CONCLUSIONS

The article presents a simple baseline model (ex-
ponential dose–response function and Weibull dis-
tribution of TTDs) that fits the pooled single- and
multiple-dose rabbit data sets(4,16) for inhalation an-
thrax and generates TTD predictions consistent with
reported TTDs from three independent rabbit data
sets.(36,37,59) More complex alternative models do not
yield a statistically significant improvement in fit over
the simple baseline model.

To advance the science for dose–response anal-
ysis of multiple-dose exposures, more experimental
research is needed regarding the effect of different
time and dose patterns for multiple doses, multiple
hosts, and multiple pathogens to inform empirical
and mechanistic model development. More robust
and generalizable response estimates can ultimately
be developed using mechanistic models once the
quantitative knowledge of the underlying pathogen-
esis is available. This will necessitate a great deal
of additional research. For example, as shown in
this article, more experimental data are needed to
determine the nature of dose dependencies over
time, particularly in the low-dose region.

An iterative process can be used whereby
empirical modeling provides critical data to inform

development of mechanistic models, and mechanistic
model outputs can then be used to identify relevant
parameters and refine their estimates for empirical
models.(60–63) If models are incorrectly defined or
highly uncertain, further experimental research can
be designed to illuminate the knowledge gaps for the
host–pathogen systems. As an example, the develop-
ment and validation of mechanistic models of host–
pathogen interactions for Mycobacterium tuberculo-
sis have been advanced by multifaceted approaches
to modeling immune response to tuberculosis over
multiple time and spatial scales using complemen-
tary mathematical, computational, and experimental
studies.(60–63) Such iterative processes involving
experimental research and modeling for inhalation
anthrax pathosystems would advance knowledge and
increase confidence in predicting responses and time-
to-responses for assessing, communicating, and man-
aging risks associated with exposures to B. anthracis.
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