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___________________________________________________________________________24 

ABSTRACT 25 

 26 

The number of studies using high throughput sequencing (HTS) methods for the 27 

characterisation of microbial communities of milk and dairy products has increased 28 

markedly in the last decade. Besides confirming what was previously known from low 29 

sensitivity and throughput cultivation based and cultivation independent techniques, HTS 30 

studies have provided deeper insights into the structure and function of microbial 31 

communities. While the comparison of raw data from different studies is still difficult due 32 

the lack of standard operating procedures, the availability of well-structured databases with 33 

raw and processed sequences has boosted our ability to get quantitative insights into the 34 

factors that shape the microbial communities of milk and dairy products. Here we critically 35 

review metataxonomic and metagenomic studies on milk from cows and other dairy 36 

species, and discuss potential sources and dynamics of microbiota during storage, transport 37 

and processing in liquid pasteurised milk, using the FoodMicrobionet database to carry out 38 

meta-analyses. 39 

___________________________________________________________________________ 40 
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1.  Introduction 60 

 61 

In the last ten years more than 165 papers in which the microbiota of dairy products 62 

has been characterised using high throughput sequencing (HTS) approaches have been 63 

published (Supplementary material Table S1). Milk and dairy products are therefore the 64 

foods for which most data on the structure and functions of microbial communities involved 65 

in animal health, safety, fermentation and spoilage are available (De Filippis, Parente, & 66 

Ercolini, 2017). Literature on the microbiome of the bovine udder and its role in the health 67 

and well-being of dairy cows (Derakhshani et al., 2018a; Rainard, 2017), on the microbiome 68 

of milk (Addis et al., 2016; Oikomonou et al., 2020; Quigley et al., 2013; Tilocca et al., 2020), 69 

and cheese (Afshari, Pillidge, Dias, Osborn, & Gill, 2018; Yeluri Jonnala, McSweeney, 70 

Sheehan, & Cotter, 2018) has been recently reviewed.  However, the most recent reviews 71 

on milk microbiota focus on aspects related to the role of udder and milk microbiota on the 72 

health of dairy animals (Addis et al., 2016; Oikomonou et al., 2020) and on methods (Tilocca 73 

et al., 2020), rather than on aspects relevant to the safety and quality of milk for the 74 

production of dairy products. While the teat surface and interior are certainly a source of 75 

bacteria which may play a role in safety and quality of dairy products, other factors, 76 

including further contamination from milking, farm and processing plant equipment 77 

environments, growth during storage and destruction of microorganisms by pasteurisation 78 

will give a significant contribution in shaping the microbiota of dairy and cheese milk. 79 

In addition, the availability of raw or processed sequencing data in large databases (QIITA, 80 

https://qiita.ucsd.edu/; MGnify, https://www.ebi.ac.uk/metagenomics/; FoodMicrobionet, 81 

Parente et al., 2016a; Parente, De Filippis, Ercolini, Ricciardi, & Zotta, 2019) offers 82 

unprecedented opportunities for exploring the food microbiome in meta-studies. Recently, 83 
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 5

we have released version 3.1 of FoodMicrobionet (Parente et al., 2019), a database of 84 

studies on the bacterial microbiota of foods, which is easily accessible through an 85 

interactive app. The database is steadily growing and its latest version includes, at the time 86 

of writing this article, 42 studies on the bacterial microbiome of dairy products (see 87 

supplementary material and supplementary data).  88 

The objective of this work is to critically review the recent knowledge on methods 89 

used in the characterisation of the microbiota of milk from cows and other dairy species, on 90 

its potential sources and on its dynamics during storage, transport and processing in liquid 91 

pasteurised milk, and make use of the data available in FoodMicrobionet to carry out meta-92 

analyses on studies on the dairy milk microbiota. 93 

 94 

2.  Milk and dairy products illuminated: the evolution of methods. 95 

 96 

All three HTS approaches (amplicon sequencing, shotgun metagenomics and 97 

metatranscriptomics; Yeluri Jonnala et al., 2018) have been used, alone or in combination, 98 

to characterise the microbiome of milk. Methods for nucleic acid extraction, wet laboratory 99 

stages, sequencing and bioinformatic analyses vary greatly among studies (Supplementary 100 

Table 1), and current approaches have been outlined in a recent review (Tilocca et al., 101 

2020). We will briefly discuss some aspects which shape our ability to understand dairy 102 

microbiota by nucleic acid targeted omics approaches. 103 

 104 

2.1. Amplicon sequencing 105 

 106 
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 Amplicon sequencing is by far the most used approach for metataxonomic studies. 107 

For bacteria, the 16S RNA gene has been most frequently targeted, but a few studies have 108 

used 16S RNA as target (Supplementary material  Table S1), to focus on the “active” fraction 109 

of the microbiota. The variable regions targeted also vary, with V1–V3 being most 110 

frequently used before the demise of the Roche 454 platforms, and V3–V4 and V4 being 111 

most frequently used with the Illumina platforms. As to fungi, Internal Transcribed Spacers 112 

ITS1 and ITS2 have been most frequently used as a target, while the use of regions of 18S 113 

and 28S is far less common. Due to the relatively short length of the regions targeted, the 114 

taxonomic resolution is often limited to the genus or, less frequently, to the species level, 115 

depending on the length and quality of sequences. However, most recently the use of single 116 

molecule sequencing (Jin et al., 2018; Li et al., 2017; Mo et al., 2019; Yang et al., 2019; Yu et 117 

al., 2018), the ability to detect oligotypes (Kamimura, De Filippis, Sant'Ana, & Ercolini, 2019) 118 

and Amplicon Sequence Variants (ASV;  Callahan et al., 2016), or the availability of 119 

optimised databases (Meola et al., 2019) has been claimed to increase taxonomic 120 

resolution.  121 

Resolution at the species level or below is critical in the analysis of the microbiota of 122 

dairy products, because species belonging to the same genus may have a very different 123 

significance for the quality and safety of dairy products. For example, several genera, like 124 

Streptococcus, Staphylococcus and Corynebacterium, include both pathogenic and starter 125 

and non-starter microorganisms, while others, like Lactobacillus include species that are 126 

either starter or non-starter bacteria. The use of the methods with the highest taxonomic 127 

resolution should therefore be encouraged. 128 

A few other coding or non-coding regions of the genome of selected bacteria have 129 

been used as a target to study the micro-diversity of selected species, with a variable degree 130 
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of success in terms of accuracy and sensitivity: Streptococcus thermophilus (lacSZ, De 131 

Filippis, La Storia, Stellato, Gatti, & Ercolini, 2014; serB, Parente et al., 2016b; Ricciardi et al., 132 

2016), amine producing lactic acid bacteria (tdc and hdc, O'Sullivan et al., 2015), Lactococcus 133 

lactis (purR, epsD, Frantzen, Kleppen, & Holo, 2018), genus Lactobacillus (groEL, Jiang et al., 134 

2019; ITS, Milani et al., 2018), L. casei group (spxB, Levante et al., 2017), genus 135 

Bifidobacterium (Milani et al., 2019), and members of the Bacillus cereus group (panC, glpT, 136 

Porcellato, Aspholm, Skeie, & Mellegård, 2019). Proteolysis related genes of LAB (prtP, 137 

pepN, pepX, bcaT) have also been used as target for metatranscriptomic studies (Pangallo et 138 

al., 2019). The usefulness of protein coding genes might be limited to selected species, but it 139 

is a cheaper alternative to shotgun whole genome sequencing, which might detect only the 140 

dominating strains in microbial communities. 141 

To date, no Standard Operating Procedures (SOPs) for AT studies in foods exist. A 142 

discussion on the best approach for AT studies for milk and dairy foods is beyond the scope 143 

of this review, and the factors affecting the results have  been reviewed recently (Pollock, 144 

Glendinning, Wisedchanwet, & Watson, 2018). However, it is quite clear that the 145 

development of SOPs, and the use of negative controls and mock communities or internal 146 

standards would be highly desirable and should be requested by editors and reviewers of 147 

scientific journals.  148 

 149 

2.2.  Shotgun approaches 150 

 151 

To date, shotgun metagenomic studies of dairy products are comparatively rare 152 

(only 11% of studies listed in Supplementary material Table S1) and meta-transcriptomic 153 

studies are even less frequent (only 4%). Due to the decreasing costs in sequencing and the 154 
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progress in the development of bioinformatic pipelines for taxonomic annotation and 155 

genome reconstruction, as well as the staggering amount of information they can provide 156 

(Tilocca et al., 2020; Yeluri Jonnala et al., 2018) they are likely to become more frequent. 157 

Pipelines for metagenomic annotation and data visualisation have been reviewed recently 158 

(Breitwieser, Lu, & Salzberg, 2017; Quince, Walker, Simpson, Loman, & Segata, 2017; 159 

Sudarikov, Tyakht, & Alexeev, 2017), and the choice of the pipeline has been shown to 160 

affect the results, especially in low diversity samples which are typical of cheese and 161 

fermented milks (Walsh et al., 2018). An alternative to the use of shotgun metagenomics is 162 

the inference of metagenomes using bioinformatic tools such as PICRUSt (and its most 163 

recent iteration, PICRUSt2; Douglas et al., 2019). Although this tool has performed relatively 164 

well in benchmarking (Douglas et al., 2019) it has been used relatively rarely for microbial 165 

communities of milk and dairy products (Cremonesi et al., 2018; Li et al., 2018; Ramezani, 166 

Hosseini, Ferrocino, Amoozegar, & Cocolin, 2017; Stellato, De Filippis, La Storia, & Ercolini, 167 

2015; Yang et al., 2019).  168 

 169 

2.3. A question of life and death 170 

 171 

A further issue related to the experimental approach is the inability of methods 172 

targeting DNA to distinguish active/viable members of microbial communities from those 173 

which are dead/inactive and contribute little or nothing to fermentation or spoilage. Studies 174 

using both DNA and RNA as a target are relatively rare (see Supplementary material Table 175 

S1; De Filippis, Genovese, Ferranti, Gilbert, & Ercolini, 2016; Kastman et al., 2016; Sattin et 176 

al., 2016b) and the use of dyes which prevent the PCR amplification of DNA from dead cells 177 

(or more properly, cells with a damaged membrane), such as PMA (propidium monoazide, 178 
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Emerson et al., 2017), is only marginally more frequent (Erkus et al., 2016; Kable, Srisengfa, 179 

Xue, Coates, & Marco, 2019; Mo et al., 2019; Porcellato & Skeie, 2016). Extensive 180 

benchmarking it still needed to rule out biases due to differential ability of PMA to 181 

penetrate cell membranes (Emerson et al., 2017). At any rate, whenever both the “active” 182 

and “inactive” fraction of the microbiota have been targeted, significant differences have 183 

been found between the two, usually with lower diversity in the “active” microbiota.  184 

 185 

2.4. Of experimental design (or lack thereof) 186 

 187 

Regrettably, the overwhelming majority of the studies listed in Supplementary 188 

material Table S1 are descriptive in nature, and even when inferential methods are used, 189 

their effectiveness in detecting significant differences (because of high natural variability, 190 

and potentially high type I and/or type II errors) is dubious. In fact, only in a very few cases 191 

experimental designs have been used (De Filippis et al., 2016; Doyle, Gleeson, O'Toole, & 192 

Cotter, 2017b; Ganda et al., 2016, 2017; Guzzon et al., 2017; Porcellato & Skeie, 2016), and 193 

for most studies the approach is quasi-experimental in nature, with insufficient 194 

randomisation, blocking and control of confounding factors. The issue of sampling effort is 195 

also critical: the range for the number of samples analysed in studies shown in 196 

Supplementary material Table S1 is 1 to 1674, but 50% of the studies have used 24 samples 197 

or less. Because of the very high variability of the microbiota of raw milk, due to seasonal, 198 

geographical and technological factors (Kable et al., 2016; Skeie, Håland, Thorsen, Narvhus, 199 

& Porcellato, 2019) one really wonders if, especially for raw milk fermented milks or cheeses 200 

produced in artisanal plants, low (<50) sample numbers and low numbers of sampling 201 

locations (farms, cheesemaking plants) are adequate to cover the expected diversity, and, 202 
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even in larger studies, utmost care should be dedicated to the design of the experiments 203 

and to the analysis of the data using appropriate inferential methods. 204 

The issue of microbial interactions in dairy ecosystems is of great interest for both 205 

scientific and practical reasons, but it has been addressed only infrequently (Frétin et al., 206 

2018; Murugesan et al., 2018; Parente et al., 2016a; Parente, Zotta, Faust, De Filippis, & 207 

Ercolini, 2018; Wolfe, Button, Santarelli, & Dutton, 2014). Detecting true interactions among 208 

species presents several challenges (Layeghifard, Hwang, & Guttman, 2017). Unfortunately, 209 

most studies are cross-sectional in nature, and, even when they are longitudinal, the 210 

number and distribution of sampling times is insufficient for model-based methods for 211 

detection of microbial interactions (Faust & Raes, 2012). More research is definitely needed 212 

in this area and combinations of culture independent and dependent approaches (Wolfe et 213 

al., 2014) are needed to validate the nature of the microbial interactions and evaluate their 214 

significance for the quality of dairy foods. 215 

 216 

3.  The microbiota of milk: from the teat to the carton 217 

 218 

A large amount of data on the microbiota of raw or pasteurised milk composition or 219 

milk contact surfaces (teat and udder surface, tanks and silos at the dairy farm or at the 220 

processing plant, etc.) are available for milk from practically all dairy animals (mostly cow, 221 

but also ewes, goats, water buffaloes, yaks, camels), either as a part of studies specifically 222 

focusing on milk quality or as a part of studies on cheese microbiota (see Supplementary 223 

material Table S1). Milk microbiota is undoubtedly complex and highly variable and in most 224 

studies the sampling effort is limited or the approach is merely descriptive, thus obscuring 225 

causal relationships. However, a few large, designed or quasi-experimental studies 226 
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addressing one of more aspects (effect of cows’ health, feeding, farming, breed, season, 227 

geographical source of milk, effect of contamination during the production and distribution 228 

chain, effect of storage temperature) are available, and combination of data from different 229 

studies in meta-analyses may help in identifying a core microbiota or detecting wider 230 

geographical or temporal trends. In the following sections, we will review the composition 231 

of the microbiota of milk as it travels from the udder to the storage tank in processing plants 232 

and, finally to the carton of pasteurised milk. 233 

 234 

3.1.  Raw milk 235 

 236 

3.1.1. Inside and outside the udder 237 

The first sources of microorganisms in raw milk are, quite obviously, the udder and 238 

the teat surface (Derakhshani, Plaizier, De Buck, Barkema, & Khafipour, 2018b). The 239 

composition of the mammary microbiota in ruminants has been recently reviewed 240 

(Derakhshani et al., 2018b; Rainard, 2017), and the mechanisms that determine its 241 

composition and dynamics are outside the scope of this review. While it is still somewhat 242 

controversial if a microbiota of the healthy mammary gland exists or if it is the result of 243 

contamination during sampling (Derakhshani et al., 2018a; Rainard, 2017), it is clear that the 244 

teat canal and apex may be colonised by bacteria and that these bacteria may contribute to 245 

the homeostasis of this niche or cause infection of the mammary gland. In fact, most of the 246 

studies using milk from individual quarters or individual animals have focused on the effect 247 

of disease (mastitis, either clinical or subclinical, subclinical acidosis) on the microbiota of 248 

milk from cows (see below and Supplementary material Table S4 for a list of studies), while 249 

only a few studies are available on ewe (Castro et al., 2019; Esteban-Blanco et al., 2019), 250 

13157
Highlight

13157
Highlight

13157
Highlight

13157
Highlight

13157
Highlight

13157
Highlight



 12 

goat (McInnis, Kalanetra, Mills, & Maga, 2015) or on water buffalo milk (Catozzi et al., 2017; 251 

Patel et al., 2016; Patel, Kunjadia, Koringa, Joshi, & Kunjadiya, 2019). This is justified by the 252 

economical and practical importance of mastitis, which is the most important disease in 253 

dairy animals in terms of both impact on milk production and quality and in terms of animal 254 

well-being (Ruegg, 2017).  255 

A few studies have analysed the milk from individual healthy cows and the teat 256 

surface to investigate the sources of microorganisms, beneficial or not, and their potential 257 

effect on cows’ health (Cremonesi et al., 2018; Falentin et al., 2016; Frétin et al., 2018). It is 258 

important to remember that sampling  and disinfection may dramatically affect the 259 

composition of the microbiota of individual milk samples (Metzger et al., 2018a), that milk 260 

obtained aseptically or by abiding to hygienic practices has usually low counts (often less 261 

than 1 × 104 cfu mL-1), and that contamination might significantly affect the results of AT 262 

studies for low count samples (Dahlberg et al., 2019). In addition, a high number of 263 

amplification cycles may be necessary for teat milk obtained aseptically (Metzger et al., 264 

2018a) and success rate of amplification may be relatively low for milk obtained aseptically 265 

from healthy quarters. The results of some early studies on low counts milk which did not 266 

include negative control or proper treatment for removing contamination might be 267 

therefore slightly biased.  268 

The teat interior and surface are among the most significant sources of 269 

microorganisms for individual milk samples, and microorganisms from these sources may 270 

persist during transport and transformation of milk. On the other hand, mastitis is likely to 271 

have a larger impact compared with external contamination from the teat interior and 272 

surface. In a carefully controlled experiment (Andrews, Neher, Weicht, & Barlow, 2019), 273 

intramammary infection was found to dramatically affect the composition of the microbiota 274 
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of teat cistern milk, which, compared with the milk of healthy animals, had a lower bacterial 275 

diversity, was more variable among different cows and was often enriched in pathogenic 276 

bacteria belonging to the same genus of those isolated by culturing from the affected 277 

quarters, supporting the hypothesis that mastitis is correlated with dysbiosis of the 278 

mammary gland. In addition, the microbiota of cistern milk and teat apex of infected 279 

quarters was more similar compared with healthy quarters, while the microbiota of cistern 280 

milk and teat apex in healthy animals was also more variable in time, suggesting that it was 281 

more affected by external contamination. 282 

The effect of mastitis on the microbiota of the teat apex may be detectable even 283 

long after the demise of symptoms. Falentin et al. (2016) examined the microbiota of the 284 

teat apex (foremilk + teat apex swabs) for healthy Holstein cows from a single experimental 285 

farm. The cows had different previous histories of mastitis. The cows’ teat canal microbiota 286 

were highly variable (even within the same cow) and teat microbiota from cows without and 287 

with a previous history of mastitis could be clearly differentiated, while microbiota of cows 288 

with an uncertain status tended to cluster with those of cows with a previous history of 289 

mastitis (cluster 1). Discrimination between the two clusters was due to a higher abundance 290 

of members of class Bacilli (with Staphylococcus aureus and Staphylococcus equorum as the 291 

most prevalent and abundant species) in cluster 1 and higher relative abundance of a 292 

diverse array of genera belonging to the phylum Actinobacteria (including Bifidobacterium), 293 

class Clostridia, phylum Bacteroidetes, including several genera associated with the 294 

gastrointestinal (GI) tract, in cluster 2. The origin of these microorganisms may be therefore 295 

the teat canal itself, in the case of mastitis agents like Staph. aureus, while the potential 296 

origin of bacteria associated with the GI tract is uncertain.  The procedure used in this study 297 

included thorough washing and sanitation before sampling of the teat canal, and may have 298 
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reduced contamination from loosely attached bacterial cells originating from faeces or from 299 

the environment, but it might not have prevented it completely. 300 

Data on the microbiota of the cow teat skin surface in animals showing no signs of 301 

clinical mastitis are available for three more studies (Doyle et al., 2017b; Falardeau, Keeney, 302 

Trmčić, Kitts, & Wang, 2019; Frétin et al., 2018). Teat skin microbiota was highly diverse and 303 

variable: a prevalence and abundance plot with data extracted from FoodMicrobionet is 304 

shown in Supplementary material Fig. S1, and a table showing the top 50 taxa in terms of 305 

prevalence and relative abundance is provided as Supplementary material Table S2. Frétin 306 

et al. (2018) sampled the teat skin of cows belonging to two breeds (Holstein and 307 

Montbeliarde) under two different farming regimes (extensive EXT, with cows feeding 308 

exclusively on pasture, and semi-extensive, SEMI, with cows feeding on pasture and 309 

concentrate) prior to evening milking (i.e., prior to washing). As a consequence, the results 310 

were probably affected by both autochthonous species and by contaminants from faeces 311 

and the farm/pasture environment. More than 300 operational taxonomic units (OTUs) and 312 

98 genera were identified, including both Actinobacteria and Clostridia as abundant 313 

members. Some OTUs (twelve, including members of the genera Brevibacterium, 314 

Lactococcus, Lactobacillus, Streptococcus, Staphylococcus, Macrococcus, Escherichia) 315 

persisted throughout the process, from teat skin to ripened cheese, while 201 were specific 316 

to teat skin. The microbiota of teat skin was most affected by the grazing system and by the 317 

season of sampling (July versus September).  318 

Falardeau et al. (2019), in a large source tracking study, confirmed that teat skin 319 

(sampled prior to washing and milking) had a high microbial diversity, which, however, was 320 

comparable with that of teat milk and tank milk. Clostridiales were the most abundant 321 

members of the microbiota (17–41%), but Actinobacteria (Corynebacterium and 322 
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Brevibacterium), Bacteroidetes (Bacteroides and Alistipes), and Proteobacteria (including 323 

Pseudomonas and Acinetobacter) were all found in the subdominant microbiota.  324 

The main difference between these two studies is the higher relative proportion of 325 

Clostridia and Bacteroidia in Falardeau et al. (2019) and the higher proportion of Bacilli and 326 

Erysipelotrichia in Frétin et al. (2018). The results of Falardeau et al. (2019) are similar to 327 

those of Doyle et al. (2017b) who analysed, in a systematic study, the effect of farming 328 

(indoor versus outdoor), and cleaning procedure on the microbiota of teat surface, 329 

individual and bulk milk samples, and confirmed that teat swab microbiota is highly diverse 330 

and significantly affected by both farming practices and cleaning. 331 

 332 

3.1.2.  The microbiota of teat milk. 333 

The microbiota of samples obtained by milking individual quarters or individual 334 

animals has been analysed in several studies, focusing on the effect of disease and/or 335 

disease treatment, such as mastitis (Angelopoulou et al., 2019; Bhatt et al., 2012; Ganda et 336 

al., 2016, 2017; Hoque et al., 2019; Kuehn et al., 2013; Metzger et al., 2018b; Oikonomou, 337 

Machado, Santisteban, Schukken, & Bicalho, 2012; Oikonomou et al., 2014; Oultram, Ganda, 338 

Boulding, Bicalho, & Oikonomou, 2017; Pang et al., 2018;  Taponen et al., 2019; Vasquez et 339 

al., 2019) and subclinical acidosis (Zhang, Huo, Zhu, & Mao, 2015), on sampling (Metzger et 340 

al., 2018a) or on the tracking of sources of contaminations (Cremonesi et al., 2018; Dahlberg 341 

et al., 2019; Doyle et al., 2017b; Falardeau et al., 2019; Metzger et al., 2018a). Comparing 342 

these studies is difficult, because of differences in practically all the factors that are known 343 

to affect the composition of microbiota (breed, health status, farming, bedding, feeding, 344 

lactation stage, etc.), in sampling, in methods used for the analysis of the microbiota. In 345 

particular, the composition of the microbiota of individual milk samples has been proven to 346 
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be strongly dependent on the sampling procedure used (Metzger et al., 2018a) and 347 

sampling procedures must be carefully documented to allow the interpretation of results 348 

from different studies.  349 

However, several findings have been confirmed by multiple studies: (i) the 350 

microbiota of milk of healthy animals is highly diverse and variable; (ii) mastitis and other 351 

clinical and subclinical conditions strongly affect the composition and diversity of the 352 

microbiota; (iii) a large number of other factors, including breed, parity, farming systems, 353 

feeding, bedding, season of the year, and days in milking significantly affect the composition 354 

of milk microbiota.  355 

To illustrate the variability of the composition of teat milk samples we have 356 

compared the results for milk from healthy cows from two studies [one illustrating the 357 

effect of breed and days in milking (Cremonesi et al., 2018), the other on contamination 358 

sources from farm to fork (Falardeau et al., 2019)] for which sequences are publicly 359 

available and which are included in FoodMicrobionet. The assembly of taxa for the two 360 

studies include 1184 genera (most of which with very low prevalence and abundance) 361 

belonging to 115 classes of 45 phyla. A bar plot of the relative abundance of the 20 most 362 

abundant and prevalent taxa is shown in Fig. 2, while a prevalence and abundance plot and 363 

the data on prevalence on the top 50 most abundant taxa are shown in Supplementary 364 

material Fig. S2 and Supplementary material Table S3, respectively.  365 

In both studies the most prevalent and abundant taxa belong to phyla Firmicutes, 366 

Actinobacteria and Bacteroidetes, but large differences are evident both within and 367 

between studies. Cremonesi et al. (2018) compared Holstein Friesians with an Italian breed 368 

(Rendena, which shows lower prevalence of mastitis) from the same farm, from drying off, 369 

to colostrum stage and to late lactation. The number of samples in this study was relatively 370 
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low, but variation over time was observed for both breeds and beginning of lactation had a 371 

significant impact on the microbiota. The composition of the microbiota of Rendena cows 372 

was more stable, and significantly different from that of Holstein cows. Streptococcus was 373 

the most prevalent and abundant genus in both breeds and together with Lactobacillus was 374 

the only genus shared by all samples. On the other hand, Falardeau et al. (2019) found that 375 

Actinobacteria (with genera Kocuria, Dermatococcus and Dietzia) were by far the 376 

dominating phylum in teat milk, while Firmicutes (with Lactococcus and Clostridium XI as 377 

most abundant genera) and Proteobacteria (with Enhydrobacter and Psychrobacter as most 378 

abundant genera) were less abundant. Notably, the microbiota of teat milk for this study 379 

was quite different from that of teat skin (see above).  380 

A seasonal effect on the composition of teat milk was also found by Metzger et al. 381 

(2018b) who monitored for over 150 days the composition of microbiota of teat milk 382 

obtained from healthy cow quarters, newly infected quarters and quarters with chronic 383 

inflammation or clinical mastitis. They found a strong effect of season of the year and of 384 

time of lactation, which resulted in increased richness from winter to summer in all cohorts, 385 

and in significant changes in the relative abundance of 20 OTUs (including Fibrobacter, 386 

Corynebacterium, Arthrobacter, Bacteroidetes), which they attributed to contamination 387 

from sand bedding and/or to physiological changes during lactation (Bacteroidetes). 388 

Interestingly, milk from quarter with chronic inflammation showed the greatest seasonal 389 

changes. 390 

Much emphasis has been given to the comparison of the microbiota of individual 391 

milk samples from healthy cows and cows with subclinical or clinical mastitis, and in the 392 

latter, for culture positive and negative samples. Differences between healthy and diseased 393 

quarters are almost always significant (even for culture negative quarters; Kuehn et al., 394 
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2013; Oikonomou et al., 2012) and analysis of the microbiota may contribute to the 395 

diagnosis in quarters with subclinical mastitis. Dominating bacteria in mastitic milk change 396 

quite substantially in different studies, depending on the number of samples tested and on 397 

the causative agents in individual cows (Supplementary material Table S4). Mastitis agents 398 

are usually abundant components of the microbiota in mastitic milk, but not necessarily the 399 

most abundant (Oikonomou et al., 2012) and their abundance may change over time 400 

(Ganda et al., 2016, 2017).  401 

In several cases, association of two or more agents of mastitis are found 402 

(Angelopoulou et al., 2019; Bhatt et al., 2012; Oikonomou et al., 2012). Potential bacterial 403 

pathogens as Streptococcus uberis and Staph. aureus might also be found with high 404 

prevalence in milk from healthy quarters (Oikonomou et al., 2014) while, on the other hand, 405 

some mastitis agents like Escherichia coli or Klebsiella were never found in samples from 406 

healthy quarters: this has led to speculate that bacterial mastitis can be considered as a 407 

dysbiosis rather than a primary clinical infection. This hypothesis may also be supported by 408 

the fact that species which most contribute to the discrimination between mastitic and non 409 

mastitic milk are not necessarily mastitis pathogens, although they might have been 410 

occasionally associated with mastitis (Kuehn et al., 2013). A recent study (Angelopoulou et 411 

al., 2019) has confirmed the complex, polymicrobial nature of mastitis and showed that 412 

culture based approaches and AT metagenomics complement each other. In an attempt to 413 

evaluate if significant associations could be detected in this data set between known 414 

mastitis pathogens and other bacteria, we carried out inferences of microbial association 415 

networks as described in Parente et al. (2018) (Supplementary material Fig. S3). Only two 416 

modules were detected, one including Escherichia/Shigella and the other Staphylococcus, 417 

two genera which include species identified by culturing as potential agents of mastitis. The 418 
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two modules did not overlap but, due to the low number of samples, it is not clear if this 419 

reflect true differences in the microbiota of milk connected to infection from either 420 

Escherichia or Staphylococcus. 421 

Another frequently observed consequence of inflammation due to mastitis is a 422 

decreased diversity in the microbiota (Andrews et al., 2019; Bonsaglia et al., 2017; Ganda et 423 

al., 2016, 2017; Kuehn et al., 2013; Metzger et al., 2018b; Taponen et al., 2019; Vasquez et 424 

al., 2019), although the lower number of OTUs in mastitic milk may be simply due to the 425 

compositional nature of AT data (when the relative abundance of one OTU increases the 426 

relative abundance of the others decreases and may fall below detection limits). Decrease in 427 

alpha diversity is a clear indication of a dysbiosis and in at least one study the largest 428 

reduction was associated with the largest decrease in milk production (Vasquez et al., 2019). 429 

However, distinguishing samples with subclinical mastitis from samples from healthy cows 430 

might not be straightforward using descriptive techniques when quasi-experimental designs 431 

are used (Pang et al., 2018), and in some non-severe cases it might be difficult to associate 432 

the mastitis condition with significant changes in abundance of bacterial families (Ganda et 433 

al., 2016; Vasquez et al., 2019). The potential impact of treatments used to control mastitis 434 

at dry off is of both scientific and practical importance. Ganda et al. (2016) compared two 435 

groups of Holstein cows that had been randomly allocated to a control group or to a group 436 

treated with 5 day intramammary treatment with Ceftiofur (a third generation 437 

cephalosporin).  Antibiotic treatment did not affect the clinical or bacteriological cure rates, 438 

nor bacterial clearance or bacterial load, but did reduce over time the relative abundance of 439 

Enterobacteriaceae in quarters with E. coli mastitis. However, no clear effect was observed 440 

on quarters without a culture diagnosis.  441 

13157
Highlight

13157
Highlight

13157
Highlight

13157
Highlight

13157
Highlight

13157
Highlight

13157
Highlight



 20 

In a subsequent study, the same group (Bonsaglia et al., 2017) showed that 442 

treatment with the same antibiotic at dry-off did not change the incidence of mastitis in the 443 

first 60 days post-partum for healthy cows, nor did it significantly affect the composition of 444 

the milk microbiota after 7 days. The authors concluded that this type of treatment does not 445 

cause dysbiosis but it does not have any therapeutic value for healthy cows. However, large 446 

individual variability may have increased type II error and prevented the detection of 447 

significant differences. Using the same antibiotic in a challenge study with E. coli, Ganda et 448 

al. (2017) observed that, independently of antibiotic use, normal microbiota re-established 449 

itself over a 216 h sampling time. This study is an excellent example of the dynamic changes 450 

of the composition of milk microbiota prior and during infection with a mastitis pathogen 451 

and shows how, after a disturbance, the microbiota may shortly revert to its initial status (or 452 

to a status that is not statistically different from the initial one). 453 

Studies on the effect of mastitis on milk microbiota for other species are relatively 454 

rare and somewhat limited in scope. Catozzi et al. (2017) investigated the teat milk 455 

microbiota in 137 samples of water buffalo milk obtained from healthy quarters and from 456 

quarters with evidences of clinical and subclinical mastitis from 88 farms of limited area in 457 

Southern Italy. They identified a core microbiota of fifteen genera, including genera 458 

commonly found in cows' milk (see Fig. 3). Both subclinical and clinical mastitis significantly 459 

changed the composition of the microbiota, usually with a relative decrease in 460 

psychrotrophic microorganism (Pseudomonas, Psychrobacter), a decrease in Actinobacteria 461 

and Firmicutes and increase in Proteobacteria and Bacteroidetes, and clinical mastitis 462 

resulted in a decrease in alpha diversity. In general, the strongest differences were found 463 

between samples with low (< 1 × 105 mL-1) and high (0.5 × 106 to > 1 × 106 mL-1) somatic cell 464 

counts (SCC). Culture results for quarters with clinical mastitis confirmed the occurrence of 465 



 21 

common mastitis pathogens, such as Staph. aureus, Turicibacter pyogenes, Streptococcus 466 

agalactiae (alone or in combination with Staph. aureus), Pseudomonas aeruginosa and 467 

some coagulase negative staphylococci. Similar results (reduced diversity, ability to 468 

discriminate samples from healthy animals from those with subclinical and clinical mastitis) 469 

have been found for water-buffalo milk in India (Patel et al., 2016, 2019). 470 

Results on the effect of mastitis on ewes ' milk microbiota are somewhat 471 

contradictory. Esteban-Blanco et al. (2019) investigated the microbiota of teat milk obtained 472 

from a relatively low number (50) of healthy Assaf ewes from a single flock in Spain. Only 5 473 

genera (Staphylococcus, Lactobacillus, Corynebacterium, Streptococcus and 474 

Escherichia/Shigella) were shared among all samples, and a high diversity was observed. 475 

Evidence of sub-clinical mastitis was associated to a reduced diversity. Using inference of 476 

microbial association networks, the authors identified two modules of ASVs, and observed 477 

that the relative abundance of the species in the two modules in samples without or with 478 

subclinical mastitis was different: this further confirms the hypothesis that subclinical 479 

mastitis causes global changes in the microbiota, which affect not only the potential 480 

causative agent but a number of other taxa.  481 

Castro et al. (2019) analysed teat milk from 36 healthy Manchega ewes with or 482 

without a previous history of mastitis from two farms in Spain. They found significant 483 

differences between the microbiota in the two farms (with significant differences between 484 

the relative abundances Staphylococcus, Paenibacillus and Geobacillus) but, contrary to 485 

what had been reported for teat microbiota of cows by Falentin et al. (2016) did not find 486 

any significant difference due to history of mastitis: again, it is unclear if this reflects true 487 

lack of differences or is a consequence of high variability. 488 
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Other clinical or subclinical conditions may affect milk microbiota and susceptibility 489 

to mastitis. Zhang et al. (2015) using a crossover experiment analysed pooled teat milk 490 

samples from Holstein cows with or without an induced subclinical acidosis condition. 491 

Although a high concentrate (HC) diet, which resulted in subclinical acidosis, did not affect 492 

microbial diversity, significant differences were found between cows with or without clinical 493 

acidosis with the former having a significantly higher abundance of Proteobacteria, and 494 

lower abundance of Armatimonadetes, Spirochaetes, Planctomycetes, Fibrobacteres, 495 

Chloroflexi, Tenericutes, Lentisphaerae, Synergistetes,  Elusimicrobia, Cyanobacteria,  496 

Verrucomicrobia and Firmicutes. The authors claimed that potential mastitis agents 497 

(including Stenotrophomonas maltophila, Brevundimonas diminuta, Streptococcus 498 

parauberis and Enterococcus faecalis) were significantly more abundant in the milk of cows 499 

fed the HC diet, which also resulted in an increase in the abundance of psychrotrophic 500 

organisms and this may support the idea that mastitis is related to dysbiosis. On the other 501 

hand, other mastitis agents, like Str. agalactiae were significantly more abundant in the milk 502 

of cows fed a low concentrate diet.  503 

Finally, there are some limited data (Zhong, Xue, & Liu, 2018) that may support the 504 

idea that udder health status may be  related to the microbiota of other body sites. In fact, 505 

diversity of the microbiota of rumen in cows with low (< 2 × 105 mL-1) or high (> 1 × 106 mL-1) 506 

SCC has been found to be significantly different, and although no evidence of separation of 507 

the composition of the microbiota of rumen in four groups of cows with different SCC was 508 

found by beta diversity analysis, significant differences were found in the relative 509 

abundance of a few taxa (phyla SR1, Actinobacteria, unclassified family Clostridiales, genus 510 

Butyrivibrio, Proteobacteria and family Succinivibrionaceae). However, the authors did not 511 
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present an evidence of a cause effect relationships nor analysed the composition of the 512 

microbiota of milk. 513 

Overall, these data support the idea that clinical and sub-clinical conditions 514 

significantly affect the composition and diversity of teat milk microbiota, prior to any further 515 

contamination from environmental sources, and that these changes may result in dysbiosis, 516 

compared with the "normal" situation characterised by a highly diverse microbiota. The 517 

dysbiosis status may be more (Falentin et al., 2016) or less (Ganda et al., 2016) persistent, 518 

and more complex and controlled longitudinal studies are clearly needed to clarify how the 519 

homeostasis of the milk microbiota is maintained or recovered in different conditions.  520 

Due to limited availability of data, to high variability, and to differences in 521 

methodologies, a direct comparison of the composition of microbiota of teat milk from 522 

different dairy species is difficult. The distribution of genera in teat milk obtained from 523 

cows, ewes or water buffaloes is shown in Fig. 3, while a NMDS (Non-metric 524 

MultiDimensional Scaling) plot is shown in Supplementary material Fig. S4. Due to the low 525 

number of studies and samples shown here it is difficult to generalise, but it is clear that 526 

several of the most abundant genera, although varying in abundance, appear in the milk of 527 

the 3 species. A shared core microbiome may exist for these three species, at least when 528 

results are aggregated at the genus level. This is confirmed by the partial overlap of the 529 

confidence ellipses of the samples from different species in Supplementary material Fig. S4.  530 

 531 

3.1.3. Further down the line: the microbiota of bulk tank milk. 532 

The vast majority of studies on milk microbiota focus on composite samples 533 

obtained from bulk tanks at the dairy farm, from tanker trucks or from silos at the dairy 534 

processing plant. Apart from disease, a large number of interrelated factors has been shown 535 
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to affect the composition of the microbiota for bulk milk: season of the year (Doyle, 536 

Gleeson, O'Toole, & Cotter, 2017a; Doyle et al., 2017b; Kable et al., 2016, 2019; Li et al., 537 

2018; Porcellato et al., 2018; Zhang, Palmer, Teh, Biggs, & Flint, 2019), lactation stage (Doyle 538 

et al., 2017a), type of farming (indoor/outdoor: Doyle et al., 2017a,b), geographic location 539 

within a country/region (Kable et al., 2016, 2019; Porcellato et al., 2018; Skeie et al., 2019; 540 

Zhang et al., 2019), processing environment (Kable et al., 2016), teat preparation (Doyle et 541 

al., 2017b), storage conditions (Doyle et al., 2017a).   542 

The issue of sources of contamination of bulk tank milk is of great practical 543 

importance, since preventing and controlling contamination by selected pathogenic or 544 

spoilage organisms may contribute to improve the safety and quality of raw milk and raw 545 

milk products. Since not all studies fully document all potential sources of variation, it is 546 

difficult to track unambiguously sources of contamination and to separate the effect of 547 

contamination from that of storage (combination of time temperature), except for a few 548 

large and structured studies (Doyle et al., 2017a,b; Falardeau et al., 2019; Kable et al., 2016; 549 

Porcellato et al., 2018).  550 

Using a source tracking approach, Doyle et al. (2017b) clearly identified teat surface 551 

and faeces as two of the major sources of microorganisms in bulk tank milk and were able 552 

to identify the contribution of other major sources of contamination (including grass for 553 

cows grazed on pasture, bedding and silage for cows housed indoor). However, the effect of 554 

housing was confounded with that of season and lactation stage since experiments were 555 

carried out on the same herd. For sources of contamination which were common to both 556 

housing regimes (faeces, teat) the composition of microbiota was affected more by the 557 

housing than by the nature of the sample (i.e., samples from the outdoor regime tended to 558 

cluster together in beta diversity analysis). In addition, the relative importance of a given 559 
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source of contamination changed for the two housing regimes (with faeces giving a higher 560 

relative contribution for bulk tank milk from cows housed indoors). The effect of teat 561 

treatment (which compared no treatment with a treatment including washing with water, 562 

disinfectant and thorough washing) clearly showed an interaction with housing (indoor 563 

versus outdoor) perhaps due to the different ability of main teat contaminants to adhere to 564 

teat surface or to survive to the treatment.  565 

These findings were confirmed by a large recent study (Falardeau et al., 2019) in 566 

which the microbiota in both environmental (soil, faeces, pasture, hay, bedding, cow 567 

environment) and food samples (individual and pooled milk samples at both the dairy farm 568 

and at the cheesemaking plant) in an artisanal cheese making facility was analysed. The 569 

microbiota of teat milk was significantly different from the microbiota of bulk tank milk 570 

(pooled pre- and post-transport milk), possibly because of both contamination from 571 

equipment and growth at refrigeration temperature. In fact, several anaerobic Firmicutes 572 

and Bacteroidetes genera were the most abundant in the bulk tank milk, but not in the teat 573 

milk, and the authors hypothesised that their source was the milking machine environment, 574 

although this was not formally proven. At any rate, 78 out of 93 core OTUs present in milk 575 

environments were also present in the dairy farm environment, supporting the idea that the 576 

dairy farm is an important source of microorganisms in bulk tank milk. An even larger 577 

number of taxa (at the genus level or above) were shared by pasture and feed, farm 578 

environments, teat skin, teat milk and bulk tank milk (Supplementary material Fig. S5). 579 

However, the relative abundance of the top 25 most abundant genera varied greatly among 580 

and within different sample sources (Fig. 4).  581 

In general, source tracking studies should be taken with caution, even when longer 582 

sequences are used. Falardeau et al. (2019) used relatively short fragments (V3 region) and 583 

13157
Highlight

13157
Highlight

13157
Highlight

13157
Highlight

13157
Highlight

13157
Highlight

13157
Highlight

13157
Highlight

13157
Highlight

13157
Highlight

13157
Highlight

13157
Highlight

13157
Highlight

13157
Highlight

13157
Highlight

13157
Highlight

13157
Highlight

13157
Highlight

13157
Highlight

13157
Highlight

13157
Highlight

13157
Highlight



 26 

Doyle et al. (2017b) targeted the V3–V4 region but used OTUs inferred using a 97% 584 

similarity level, while in an amplicon targeted study with higher taxonomic resolution, Skeie 585 

et al. (2019) showed that even within the same species different ASVs may have a different 586 

distribution (see below). Metagenomic studies may reveal the composition of populations at 587 

the strain level and allow the tracking of the sources of the most prevalent and abundant 588 

strains, but the cost of studies with sufficient sample sizes would probably be unjustified. 589 

The effect of season on the composition of bulk tank milk has been studied by 590 

several authors (Doyle et al., 2017a; Li et al., 2018; Zhang et al., 2019): all have found a 591 

significant effect, which, however, may be confounded with many other factors (days in 592 

lactation, farming system, feeding, etc.). Doyle et al. (2017a) compared samples collected in 593 

spring and October, but, due to farming practices in Ireland, this was completely 594 

confounded with feed, lactation stage and housing. Mid-lactation samples (collected in 595 

spring with cows feeding on pasture outdoors) were significantly different from late 596 

lactation samples (collected in autumn when at least for part of the sampling period the 597 

cows were housed inside and fed a diet containing concentrate and silage): they had a 598 

higher diversity, while for individual milk samples of cows fed on pasture a slightly lower 599 

diversity was found (Doyle et al., 2017b), and 85 taxa showed significant differences in 600 

abundance between mid- and late-lactation samples. 601 

Two further studies (Li et al., 2018; Zhang et al., 2019) have confirmed that a 602 

significant seasonal variation exists in the composition of milk microbiota. In both studies 603 

members of the genera Acinetobacter, Lactococcus and Pseudomonas were found to be 604 

both abundant and highly prevalent, and several genera showed changes of abundance in 605 

different seasons (Pseudomonas, Propionibacterium, Flavobacterium: Li et al., 2018; 606 

Pseudomonas, two Lactococcus, one Serratia and one Acinetobacter: Zhang et al., 2019). 607 
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Unfortunately, both studies used a descriptive approach and little or no details were 608 

provided on critical factors which are likely to affect microbiota and which may be 609 

confounded with the effect of season (farming, breeds, feeding, lactation stage, etc.) and 610 

the causes of the observed patterns remain unclear. 611 

Using a high-resolution method based on ASV inference, Skeie et al., (2019) 612 

confirmed the high variability, even over short time scales, of the composition of bulk tank 613 

milk microbiota. The authors analysed 135 milk samples in three samplings from 45 farms in 614 

Norway over three months in winter. The farms were located in two geographically distant 615 

areas sharing similar climatic conditions, but had three different milking systems. Although 616 

milk was collected on average every 3 days, bacterial counts were reasonably low, with a 617 

median value of 4.25 log cfu mL-1 and only two samples exceeding 105 cfu mL-1, with higher 618 

values associated systematically with parlour farms with automatic milking systems. Beta-619 

diversity (weighted UniFrac) was significantly affected by all the variables used in this quasi-620 

experimental study (areas, sampling, farms, housing/milking systems) and the abundance of 621 

several bacterial genera (including Pseudomonas, Bacillus, Staphylococcus, Paenibacillus, 622 

Psychrobacter, Chryseobacterium, Aerococcus, and Rhizobium) was significantly different 623 

among geographic areas, farms or sampling dates. The microdiversity for selected taxa, as 624 

measured by the number and types of ASVs, was also affected by several factors.  625 

Interestingly, Corynebacterium, which had the highest number of ASVs but a low 626 

average abundance, had the lowest number of ASVs per farm. The composition of 627 

populations of Pseudomonas and Lactococcus were significantly affected by collection day, 628 

area and housing/milking system possibly because of the potential variety of environmental 629 

sources and growth during refrigerated storage. Bacillus and Streptococcus populations 630 

changed between collection days from the same farm and between farms and geographical 631 
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areas. Levels and composition of populations of Bacillus and Paenibacillus, two aerobic 632 

spore formers genera that are of particular concern due to their ability to survive 633 

pasteurisation and grow in long shelf life pasteurised milk (Porcellato et al., 2018, 2019), 634 

were different between the 2 geographical areas. Fluctuations and diversity in the 635 

composition of Streptococcus populations were attributed to variability in the 636 

contamination of the udder of individual cows, with higher variability in larger farms.  637 

The temperature and duration of storage are clearly two factors that may have a 638 

dramatic effect on the composition of the microbiota, with higher refrigeration 639 

temperatures favouring the growth of psychrotrophic microorganisms. Doyle et al. (2017a) 640 

investigated the effect of temperature (2, 4 or 6 °C) on the composition of microbiota of 641 

mid- and late-lactation milk stored for 5 days. There was very little increase in bacterial 642 

numbers during storage, as judged by qPCR, except for late-lactation samples stored at 6 °C. 643 

No significant differences in composition of the microbiota was noted at the end of storage 644 

at 2 °C. However, at both 4 and 6 °C a significant increase was found in the proportion of 645 

Streptococcus and Pseudomonas for samples stored at 4 °C and of Acinetobacter and 646 

Pseudomonas for samples stored at 6 °C. The authors did not attempt to use the qPCR data 647 

in conjunction with the relative abundance data obtained by AT metagenomics and it is not 648 

clear if the strong decrease in abundance for some taxa (Staphylococcus, Rhodanococcus 649 

and uncultured Ruminococcaceae) is due to the compositional nature of abundance tables 650 

or if any other taxa increased in number during refrigerated storage.  651 

In an another study (Zhang et al., 2019) prolonged storage at 7 °C also resulted in 652 

high relative abundance of several psychrotrophic bacteria belonging to the genera 653 

Pseudomonas, Acinetobacter, Carnobacterium, Chryseobacterium, Erwinia, Hafnia, 654 

Flavobacterium, Kluyvera and Lactococcus, with some species (Pseudomonas fluorescens 655 
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and Pseudomonas psychrophila) reaching almost 80% of the sequences. A similar trend for 656 

increase in the relative abundance of psychrotrophic bacteria was also found in the source 657 

tracking study of Falardeau et al. (2019), where bulk and transport tanks contamination may 658 

have significantly contributed, together with storage, to the increase of psychrotrophs, with 659 

Pseudomonas, Psychrobacter and Acinetobacter among the most abundant genera. 660 

Variations in simple milk quality parameters may be associated with changes in the 661 

microbiota composition. Rodrigues, Lima, Canniatti-Brazaca, and Bicalho (2017) analysed 662 

472 low counts (<104 cfu mL-1) bulk tank milk samples from dairy farms in New York state 663 

(USA) over 2 months and evaluate the correlation between SCC, and standard plate counts 664 

(SPC) with composition of the microbiota. As usual, a high diversity and variability was found 665 

but a core microbiome was identified across the 19 farms. Significant association was found 666 

between the relative abundance of several genera and low or high SCC and SPC counts. In 667 

fact, high SCC milk was significantly associated with increased abundance of 668 

Corynebacterium, Streptococcus, Lactobacillus, Coxiella, Arthrobacter, and Lactococcus 669 

(noticeably only some of this may be potentially associated with mastitis), while high SPC 670 

milk (>3.6 log cfu mL-1) had increased abundances of Acinetobacter, Enterobacteriaceae, 671 

Corynebacterium and Streptococcus and usually lower diversity: this suggests that shifts in 672 

community composition were due to bacterial growth. 673 

Even with this very large variability, a core microbiota of bulk tank milk does 674 

apparently exist. Using data in FoodMicrobionet, we were able to combine the results, at 675 

the genus level or above, for five studies including 199 samples of bulk tank milk from 676 

different geographic regions: Ireland (Doyle et al., 2017a), France (Frétin et al., 2018), New 677 

Zealand (Li et al., 2018), Norway (Skeie et al., 2019), and Canada (Falardeau et al., 2019). 678 

Data on prevalence and abundance of the top most prevalent and abundant taxa are shown 679 
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in Supplementary material Fig. S6 and Supplementary material Table 5, while the 680 

distribution of abundance for the 25 most prevalent and abundant genera is shown in Fig. 5.  681 

The combined diversity in these five studies is impressive, with almost 2,000 taxa 682 

identified at the genus level or above. However, four phyla (Firmicutes, Proteobacteria, 683 

Bacteroidetes and Actinobacteria) include the majority of the most abundant and prevalent 684 

taxa. The top 25 genera include psychrotrophs (Acinetobacter, Chryseobacterium, 685 

Pseudomonas, Psychrobacter), bacteria associated with gut (Atopostipes, Bacteroides, 686 

Christensenellaceae, Clostridium, Rikenellaceae, Romboutsia, Ruminococcaceae), or with 687 

teat skin (Staphylococcus, Aerococcus, Turicibacter, Streptococcus, Facklamia, 688 

Corynebacterium, Bacillus), including genera with potentially beneficial microorganisms 689 

(Lactobacillus, Streptococcus, Lactococcus, Staphylococcus, Corynebacterium). The intra-690 

study variability was sometimes substantial but, surprisingly enough, the composition of the 691 

microbiota for some studies, even from different countries, was similar, as assessed by non-692 

metric multidimensional scaling (Supplementary material Fig. S7). Not surprisingly, the 693 

diversity was lower for samples obtained from a single farm (ST37: Doyle et al., 2017a; ST39: 694 

Frétin et al., 2018; ST74: Falardeau et al., 2019), even when samples were obtained in 695 

different seasons (Doyle et al., 2017a; Frétin et al., 2018) or from cows belonging to 696 

different breeds (Frétin et al., 2018) or with different feeding regimes (Doyle et al., 2017a; 697 

Frétin et al., 2018).  698 

There are very limited data on the composition of bulk tank milk at the dairy farm for 699 

species other than cows and the results are difficult to generalise. In two small studies on 700 

jennies (de los Dolores Soto del Rio, Dalmasso, Civera, & Bottero, 2017) and on goats 701 

(McInnis et al., 2015) the usual high diversity and variability was found, but any inference on 702 

the potential sources of variation is impossible due to the limited scope of these studies. 703 
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However, in both studies a potential effect of lysozyme, which was naturally abundant in 704 

jennies' milk or whose secretion was engineered in goats might have affected the 705 

composition of the microbiota.  706 

 707 

3.1.4.  From the farm to the processing plant 708 

Transfer of bulk tank milk from the dairy farm to the processing plant and further 709 

storage and processing steps may alter significantly the composition of milk microbiota as a 710 

result of contamination and growth. A number of recent well-structured studies have 711 

offered significant insight in this area for both milk processed to become liquid milk 712 

products or cheese (Falardeau et al., 2019; Kable et al., 2016, 2019; Porcellato et al., 2018, 713 

2019). 714 

All evidence confirms that contamination form transport trucks and from tanks and 715 

equipment at the dairy plant, cleaning routines, heat treatments, and duration and 716 

conditions of storage has a significant impact on the structure of microbial communities of 717 

milk, and thus potentially affect the quality of cheese and milk due to variations in the 718 

abundance of potential starter and non-starter species of the genera (Streptococcus, 719 

Staphylococcus, Macrococcus, Corynebacterium, etc.) and of spoilage bacteria 720 

(Acinetobacter, Pseudomonas, psychrotrophic spore-formers).  721 

Kable et al. (2016) analysed the microbiota of milk from 899 tankers delivering raw 722 

cow milk to two processing farms in California (USA) over three seasons. They confirmed the 723 

occurrence of a high variability in the composition of the microbiota, the occurrence of 724 

seasonal variations, and found a core microbiota dominated by members of the genera 725 

Streptococcus, Staphylococcus and Clostridiales. Notably, only some of the taxa 726 

(Staphylococcus, Bacillus, Enterococcus, Streptococcus, Clostridium, Ruminococcus, 727 
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Corynebacterium, Acinetobacter) they identified as members of the core cow milk 728 

microbiota match those found as being highly prevalent and abundant in studies on bulk 729 

tank milk (see Fig. 5 and Supplementary material Table 5), but this might have been due to 730 

differences in criteria used to define the core microbiota. Significant differences were found 731 

between samples collected in the three seasons. Relative abundance of Firmicutes was 732 

significantly smaller in spring samples, while those of Actinobacteria was higher, while the 733 

relative abundance of Bacteroidetes was higher in autumn.  734 

The authors hypothesised that differences in composition might be due to 735 

differential exposure to sources of contamination in different seasons (with possibly more 736 

contact with soil, a potential source of Actinobacteria, in spring), but clear-cut evidence for 737 

this is lacking. While tanker milk samples had low counts (median ~5 × 103 cfu mL-1, as 738 

measured by qPCR), growth between refilling cycles of the tankers cannot be excluded as a 739 

contributing factor to the observed differences (Kuhn, Meunier-Goddik, & Waite-Cusic, 740 

2018). This was confirmed by a later work (Kable et al., 2019; see below) and by the 741 

observation that the silo used for milk storage may significantly affect the composition of 742 

the microbiota of milk transferred from tanker trucks, with Pseudomonadales and 743 

Lactobacillales being more abundant in the silos. Growth in residual milk in the silo may be a 744 

contributing factor (higher cell counts in silos compared with tankers) but stochastic 745 

patterns of contamination may contribute. Two groups of silos were identified. In one the 746 

microbiota was similar to those of the tankers used to fill them, and had significantly higher 747 

proportions of Streptococcus, Corynebacterium, Macrococcus and Clostridium. In the other 748 

the microbiota of the silos was distant from those of the tankers (weighted UniFrac 749 

distance), and Acinetobacter was significantly more abundant.  750 
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In a follow-up study Kable et al. (2019) carried out an in depth investigation of the 751 

quantitative and qualitative variations of the microbiota in the processing plant. In addition, 752 

PMA treatment was used to enrich viable cells after lethal treatments (pasteurisation). They 753 

confirmed that OTUs belonging to the genus Streptococcus (and tentatively identified as S. 754 

thermophilus/salivarius) were most abundant and prevalent in milk at all stages, and 755 

confirmed the occurrence of a seasonal effect, with some genera (including Acinetobacter 756 

and Lactococcus) more abundant in late summer compared with spring. Several taxa, whose 757 

overall abundance was relatively low, showed interesting time-dependent or spatial 758 

patterns and were occasionally more abundant. An effect of growth on the composition of 759 

bacterial communities was clearly related to the length of time a piece of equipment was 760 

operated after cleaning and to heat treatments. Psychrotrophic species clearly increased as 761 

storage duration increased: the relative abundance of Acinetobacter and Lactococcus 762 

significantly increased over time in the raw milk silo, while a single Pseudomonas OTU was 763 

enriched in summer after a post-pasteurisation concentration step. On the other hand, heat 764 

treatments caused a decrease in non spore-formers and an increase of thermoduric species 765 

and spore-formers, especially when the active fraction of the microbiota was targeted using 766 

PMA treatments. Anoxybacillus, whose overall abundance was relatively low, seemed to be 767 

enriched after long operation time and both Anoxybacillus and Thermus were enriched after 768 

pasteuriSation.  769 

Composition of viable and total microbiota after pasteuriSation was dramatically 770 

different for some steps, as shown by weighted UniFrac distance. Turicibacter, was 771 

significantly enriched in the viable fraction, while the abundance of Staphylococcus was 772 

significantly lower. Other spore-formers or thermotolerant genera (including Bacillus, 773 

Clostridium, Anoxybacillus and Thermus) were also more abundant in the viable fraction 774 
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after pasteurisation (the difference was not statistically significant) while several other non 775 

spore-formers (Bacilli, Clostridia, and Actinobacteria) showed a lower abundance in the 776 

viable fraction. This confirms that obtaining a realistic picture of the active fraction of the 777 

microbial community by eliminating the contribution from dead or membrane damaged 778 

cells is of utmost importance (Erkus et al., 2016; Porcellato & Skeie, 2016). 779 

Kable et al. (2019) also evaluated the impact of time of operation of individual pieces 780 

of equipment after cleaning. Within 19 h from cleaning-in-place (CIP) the numbers of viable 781 

cells were low (<3200 cells mL-1) and the microbiota composition was diverse, although 782 

different species prevailed in different pieces of equipment, mostly depending on whether 783 

they contained raw or pasteurised milk: spore-formers, including Bacillus and Anoxybacillus, 784 

were abundant in equipment containing pasteurised milk. After 19 h of operation since the 785 

last cleaning, the equipment was divided in two groups. In some samples there was little 786 

increase in bacterial numbers and the dominating taxa were close to those appearing in raw 787 

milk. In the others, which mostly included milk feeds which had not been pasteurised, were 788 

dominated by Acinetobacter and Lactococcus, while in the concentration step silos the 789 

dominating genus was Anoxybacillus. Unfortunately, in this study relatively short sequences 790 

were used (V4 region of the 16S RNA gene) and proper source tracking at or below the 791 

species level is almost impossible.  792 

Porcellato et al. (2018, 2019), using a similar approach, evaluated the dynamics of 793 

the microbiota in a Norwegian plant producing liquid pasteurised milk as a function of 794 

season of production, milk source, and time and temperature of storage of the pasteurised 795 

milk. As in many other papers, a very high diversity and significant differences in the 796 

composition of the microbiota between different seasons was found in silo milk, although 797 

no significant difference was found for dairies located in two different areas of the country. 798 
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Pasteurisation reduced counts by up to 2 log cycles, and only after prolonged (13–14 d, end 799 

of shelf life) incubation of the pasteurised milk cartons at abuse temperature (8 °C) counts 800 

exceeding 107 cfu mL-1 (with high presumptive B. cereus counts) were obtained, with 801 

significantly higher abundances of Bacillus, Paenibacillus, Solibacillus, Anoxybacillus, 802 

Geobacillus and Jeotgalicococcus. Although no treatment was used to separate viable from 803 

total bacteria, the composition of the microbiota immediately after pasteurisation was 804 

significantly different from that of raw milk: 21 order level OTUs (15 of which Clostridiales) 805 

were more abundant in raw milk and 27 (including Lactobacillales, Clostridiales and 806 

Pseudomonadales) more abundant in pasteurised milk. After incubation at 4 °C a seasonal 807 

variation of the abundance of Bacillus was found in pasteurised milk, and this correlated 808 

well with the seasonal variation of this genus in raw milk. 809 

In a follow up work, Porcellato et al. (2019) used a more sensitive AT strategy, an in 810 

depth analysis of OTUs identified on the basis of 16S RNA gene sequence and assigned to 811 

the genus Bacillus and amplifying conserved regions of three genes (pantothenate synthase, 812 

panC; glycerol-3 phosphate transporter glpT; pyruvate carboxylase, pyrC). A single OTU 813 

belonging to the B. cereus group made up 99.6% of the sequences of the genus Bacillus, 814 

while another occasionally dominated the microbiota of spoiled cartons at 8 °C. Use of panC 815 

as gene target resulted in the highest diversity. A seasonal variation of the composition of 816 

the population of the B. cereus group was found, and storage at 8 °C resulted in a higher 817 

diversity compared with raw milk and milk stored at 4 °C, perhaps simply because more 818 

strains had the opportunity to grow over the detection limit. Two panC sequence types (ST) 819 

were found at relatively high abundance in all samples.  820 

Several other papers have demonstrated that the pasteurisation treatment results in 821 

an enrichment of spore-formers (Bacillus, Anoxybacillus, Turicibacter) or thermotolerant 822 
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bacteria (Thermus) in both the viable fraction and in the total microbiota. These genera 823 

have been frequently found in raw milk (see Figs. 4 and 5 and Supplementary material 824 

Tables 3 and 5) and some have been associated to spoilage, e.g., Anoxybacillus (Kable et al., 825 

2019), Thermus (Quigley et al., 2016), Bacillus (Sattin et al., 2016a; Porcellato et al., 2018).  826 

Turicibacter is universally present in milk, from teat milk to pasteurised milk, but its 827 

significance and its potential to grow and spoil milk are not known. Anoxybacillus may show 828 

some potential to survive and grow in milk (Kable et al., 2019) and has been found in high 829 

numbers in Ricotta cheese (Sattin et al., 2016a) where it might contribute to spoilage. 830 

Another recent study (Falardeau et al., 2019) has confirmed that contamination with 831 

microorganisms from storage tanks and storage at low temperatures are the main drivers of 832 

changes in the composition of microbiota of bulk tank milk. In this study, the composition of 833 

the microbiota of milk at the farm bulk tank was dramatically different from that of the 834 

storage tank at the cheesemaking plant (with a duration of transportation of about 20 min), 835 

and further incubation in a chilled room resulted in the microbiota being dominated by 836 

Pseudomonas. On the other hand, the composition of the microbiota of the bulk tank and 837 

that of the transport tank were very similar and significantly different from that of the 838 

pooled tank milk pre- and post-transport. 839 

When data from these three studies (Falardeau et al., 2019; Kable et al., 2019; 840 

Porcellato et al., 2018) are compared, a more general picture emerges. The 50 most 841 

prevalent and abundant taxa are listed in Supplementary material Table 6. Several of these 842 

taxa match those found in bulk tank milk, and, although many taxa whose likely origin is the 843 

GI tract are still present at low abundance, the most abundant and prevalent taxa include 844 

Streptococcus, Lactococcus, Pseudomonas, Acinetobacter, Lactobacillus, Staphylococcus, 845 

Psychrobacter and Escherichia/Shigella. However, the prevalence and maximum relative 846 
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abundance of many genera including psychrotrophs is increased compared with bulk tank 847 

milk at the farm, confirming that storage at low temperature is the main driver of the 848 

change in composition of the microbiota. Several thermoduric taxa, including spore-formers 849 

(Turicibacter, Anoxybacillus, Bacillus, Clostridium) are also prevalent and sometimes 850 

abundant.  851 

The distribution of abundance of the top 25 genera in raw and HTST (high 852 

temperature short time) treated milk at the processing plant is compared in Fig. 6. While 853 

there is no guarantee that the nucleic acid target was from viable cells [only data for 854 

samples not treated with PMA from Kable et al. (2019) are shown], some major differences 855 

are evident between studies (some taxa that were relatively abundant in ST74 and ST87 are 856 

almost absent in ST38) and, within study, between HTST and raw milk. In the latter, the 857 

relative proportion of psychrotrophs tends to be higher, while that of thermoduric species, 858 

including both non spore-formers and spore-formers is higher. 859 

Several papers describing the evolution of the composition of cheese microbiota 860 

report the composition of raw milk prior to starter addition. These include studies on cows’ 861 

milk cheeses (Alessandria et al., 2016; Bokulich & Mills, 2013; Calasso et al., 2016; Carafa et 862 

al., 2019; De Filippis et al., 2016; De Pasquale, Di Cagno, Buchin, De Angelis, & Gobbetti, 863 

2014b; Dolci, De Filippis, La Storia, Ercolini, & Cocolin, 2014; Falardeau et al., 2019; Frétin et 864 

al., 2018; Giello et al., 2017; Masoud et al., 2011), water-buffalo cheeses (Ercolini, De 865 

Filippis, La Storia, & Iacono, 2012), ewes’ milk cheeses (De Pasquale et al., 2014a), 866 

fermented yak milk products (Jiang et al., 2019) and camel milk (Amrouche, Mounier, 867 

Pawtowski, Thomas, & Picot, 2020; Zhao et al., 2019). Although these studies invariably 868 

show a high diversity in milk microbiota, the description of the storage conditions and 869 
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duration, and of the source of the milk is generally insufficient to allow any comparison with 870 

studies focusing on milk. 871 

 872 

4.  Conclusions 873 

 874 

The microbiota of milk is probably one of the most complex food microbial 875 

communities, because of the multiplicity of sources of contamination (Addis et al., 2016; 876 

Derakshani et al., 2018a). The availability of HTS methods, with the ability to study in detail 877 

both the taxonomic structure and the functionality of microbial communities has 878 

revolutionised our ability to study the structure and function of food microbiomes and has 879 

undoubtedly greatly contributed to our understanding of the factors affecting 880 

contamination patterns and successions in milk and dairy foods. The availability of raw and 881 

processed sequence data (see Supplementary material and data) greatly enhances our 882 

ability of combining and analysing results from different studies, thus, facilitating 883 

metastudies. At almost 9 years from the publication of the first paper on the microbiota of 884 

dairy products, sequencing platforms, methods and bioinformatic approaches have evolved 885 

greatly and, although most recent papers use similar pipelines, there is still a need for a 886 

consensus of dairy microbiologists on SOPs, which would improve confidence in the results 887 

and comparability of studies. Careful documentation of all potential factors affecting the 888 

composition of milk microbiota is of uttermost importance for the interpretation of the 889 

results. 890 

Even with these caveats, our understanding of the relationships between udder 891 

health and milk quality has significantly improved. Mastitis and dysbiosis of microbial 892 

communities of the udder are strongly related, although the cause-effect relationship is not 893 
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completely clear. In addition, HTS approaches allow to shed light on the potential causative 894 

agents in culture negative and sub-clinical cases and to clarify the polymicrobial nature of 895 

some mastitis cases. 896 

Practically all conceivable factors related to farming and storage of raw milk have 897 

been shown to affect the composition of milk microbiota, and several sources (faeces, 898 

pasture, feed, milking equipment, storage tanks, etc.) might contribute microorganisms 899 

relevant for the quality of dairy milk and fermented dairy products. However, the low 900 

taxonomic resolution of some studies (that track genera, or at best, species, not strains) still 901 

obscures the potential contribution of each source and more effort should be probably 902 

devoted to disentangle the relative contribution of contamination, growth at low 903 

temperature and ability to survive pasteurisation treatments in determining the potential 904 

for microorganisms from different sources to affect the quality of dairy products. Recent 905 

findings on the origin and survival of spore-formers and other thermoduric microorganisms 906 

in the dairy plant (Kable et al., 2019; Porcellato et al., 2018, 2019) have indeed provided 907 

insights which might contribute to improving practices in cleaning, sanitation and heat 908 

treatment of milk.  909 

However, still much remains to be done on the potential contribution of milk in 910 

terms of starter and non-starter microorganisms relevant to cheese production: although 911 

HTS methods are indeed much more sensitive than other cultivation dependent and 912 

independent approaches, the low levels of contamination of hygienically produced milk 913 

complicate the tracking of species and strains. The decreasing costs of shotgun approaches 914 

and the availability of powerful bioinformatic pipelines might in the near future open new 915 

avenues to the study of sources of milk contamination. 916 

 917 
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Legends to figures 

 

Fig. 1. Stacked bar plot showing the relative abundance of bacterial classes on cows’ teats in 

two studies (Falardeau et al., 2019; Frétin et al., 2018). Sequences were downloaded from 

NCBI/SRA and processed as described in Parente et al. (2019). 

 

Fig. 2. Stacked bar plot showing the relative abundance of the 20 most abundant taxa (at 

the genus level or above are shown) in individual samples from teat milk from Cremonesi et 

al. (2018; colostrum samples were removed) and Falardeau et al. (2019). Sequences were 

downloaded from NCBI/SRA and processed as described in Parente et al. (2019). For the 

Cremonesi et al. (2018) samples, HF and REN in sample names indicate samples from 

Holstein Fresians and Rendena cows, respectively. 

 

Fig. 3. Stacked bar plot showing the relative abundance of the 24 most abundant taxa (at 

the genus level or above are shown) for teat milk from cows [ST47, Cremonesi et al., 2018 

(colostrum samples were removed); ST74, Falardeau et al., 2019], ewes (Castro et al., 2019) 

and water-buffaloes (Catozzi et al., 2017; only samples from healthy quarters are shown). 

Samples from each study have been pooled. Sequences were downloaded from NCBI/SRA 

and processed as described in Parente et al. (2019). 

 

Fig. 4. Boxplots for the distribution of relative abundance for the 25 most abundant and 

prevalent genera in pasture and feed, farm environments, teat skin, teat and bulk tank milk 

in Falardeau et al. (2019). Sequences were downloaded from NCBI/SRA and processed as 

described in Parente et al. (2019). 



 

Fig. 5. Boxplots for the distribution of relative abundance for the 25 most abundant and 

prevalent genera in cow bulk tank milk from five studies: ST37, Doyle et al., 2017a; ST39, 

Frétin et al., 2018; ST81, Li et al., 2018; ST46, Skeie et al., 2019; ST74, Falardeau et al., 2019. 

Sequences were downloaded from NCBI/SRA and processed as described in Parente et al. 

(2019). 

 

Fig. 6. Boxplots for the distribution of relative abundance for the 25 most abundant and 

prevalent genera in raw and HTST treated milk at the processing plant for three studies: 

ST38, Porcellato et al., 2018; ST74, Falardeau et al., 2019; ST87, Kable et al., 2019. 

Sequences were downloaded from NCBI/SRA and processed as described in Parente et al. 

(2019). 

 
















